Формулы для нахождения объема параллелепипеда. Объем параллелепипеда Параллелепипеда равен произведению длины

ГЛАВА ТРЕТЬЯ

МНОГОГРАННИКИ

II ОБЪЕМ ПРИЗМЫ И ПИРАМИДЫ

82. Основные допущения в объёмах. Величина части пространства, занимаемого геометрическим телом, называется объёмом этого тела.

Мы ставим, задачу - найти для этой величины выражение в виде некоторого числа, измеряющего эту величину. При этом мы будем руководствоваться следующими исходными положениями:

1) Равные тела имеют равные объёмы .

2) Объём какого-нибудь тела (например, каждого параллелепипеда, изображённого на черт. 87), состоящего из частей (Р и Q), равен сумме объёмов этих частей .

Два тела, имеющие одинаковые объемы, называются равновеликими.

83. Единица объёма. За единицу объёмов при измерении их берут объём такого куба, у которого каждое ребро равно линейной единице. Так, употребительны кубические метры (м 3), кубические сантиметры (см 3) и т. д.

Объём параллелепипеда

84. Теорема. Объём прямоугольного параллелепипедa равен произведению трёх его измерений.

В таком кратком выражения теорему эту надо понимать так: число, выражающее объём прямоугольного параллелепипеда в кубической единице, равно произведению чисел, выражающих три его измерения в соответствующей линейной единице, т. е. в единице, являющейся ребром куба, объём которого принят за кубическую единицу. Так, если х есть число, выражающее объём прямоугольного параллелепипеда в кубических сантиметрах, и а, b и с -числа, выражающие три его измерения в линейных сантиметрах, то теорема утверждает, что x = abc .

При доказательстве рассмотрим особо следующие три случая:

1) Измерения выражаются целыми числами .

Пусть, например, измерения будут (черт. 88): АВ = а , ВС = b и BD = c ,
где а, b и с - какие-нибудь целые числа (например, как изображено у нас на чертеже: а = 4, b = 2 и с = 5). Тогда основание параллелепипеда содержит ab таких квадратов, из которых каждый представляет собой соответствующую квадратную единицу. На каждом из этих квадратов, очевидно, можно поместить по одной кубической единице. Тогда получится слой (изображённый на чертеже), состоящий из ab кубических единиц. Так как высота этого слоя равна одной линейной единице, а высота всего параллелепипеда содержит с таких единиц, то внутри параллелепипеда можно поместить с таких слоев. Следовательно, объём этого параллелепипеда равен abc кубических единиц.

2) Измерения выражаются дробными числами . Пусть измерения параллелепипеда будут:

m / n , p / q , r / s

. (некоторые из этих дробей могут равняться целому числу). Приведя дроби к одинаковому знаменателю, будем иметь:

mqs / nqs , pns / nqs , rnq / nqs

Примем 1 / nqs долю линейной единицы за новую (вспомогательную) единицу длины. Тогда в этой новой единице измерения данного параллелепипеда выразятся целыми числами, а именно: mqs, pns и rnq , и потому по доказанному (в случае 1) объём параллелепипеда равен произведению (mqs ) (pns ) (rnq ), если измерять этот объём новой кубической единицей, соответствующей новой линейной единице. Таких кубических единиц в одной кубической единице, соответствующей прежней линейной единице, содержится (nqs ) 3 ; значит, новая кубическая единица составляет 1 /(nqs ) 3 прежней. Поэтому объём параллелепипеда, выраженный в прежних единицах, равен:

3) Измерения выражаются иррациональными числами . Пусть у данного параллелепипеда (черт. 89), который для краткости мы, обозначим одной буквой Q, измерения будут:

АВ = α ; AС = β; AD = γ,

где все числа α , β и γ или только некоторые из них иррациональные.

Каждое из чисел α , β и γ может быть представлено в виде бесконечной десятичной дроби. Возьмём приближённые значения этих дробей с п десятичными знаками сначала с недостатком, а затем с избытком. Значения с недостатком обозначим α n , β n , γ n , значения с избытком α" n , β" n , γ" n . Отложим на ребре АВ, начиная от точки А, два отрезка AB 1 = α n и АВ 2 = α" n .
На ребре АС от той же точки А отложим отрезки АС 1 = β n и AС 2 = β" n и на ребре AD от той же точки-отрезки АD 1 = γ n и AD 2 = γ" n .

При этом мы будем иметь:

AB 1 < АВ < АВ 2 ; АС 1 < АС < АС 2 ; AD 1 < AD < AD 2 .

Построим теперь два вспомогательных параллелепипеда; один (обозначим его Q 1) с измерениями АВ 1 , АС 1 и AD 1 и другой (обозначим его Q 2) с измерениями АВ 2 , АС 2 и AD 2 . Параллелепипед Q 1 будет весь помещаться внутри параллелепипеда Q, а параллелепипед Q 2 будет содержать внутри себя параллелепипед Q.

По доказанному (в случае 2) будем иметь:

объём Q 1 = α n β n γ n (1)

объём Q 2 = α" n β" n γ" n (2)

Оричём объём Q 1 < объёма Q 2 .

Начнём теперь увеличивать число п . Это значит, что мы берём приближённые значения чисел α , β , γ всё с большей и большей степенью точности.

Посмотрим, как при этом изменяются объемы параллелепипедов Q 1 и Q 2 .

При неограниченном возрастании п объём Q 1 , очевидно, увеличивается и в силу равенства (1) при беспредельном увеличении n имеет споим пределом предел произведения (α n β n γ n ). Объём Q 2 , очевидно, уменьшается и в силу равенства (2) имеет пределом предел произведения (α" n β" n γ" n ). Но из алгебры известно, что оба произведения
α n β n γ n и α" n β" n γ" n при неограниченном увеличении п имеют общий предел, который является произведением иррациональных чисел αβγ.

Этот предел мы и принимаем за меру объёма параллелепипеда Q: объём Q = αβγ.

Можно доказать, что определённый таким образом объём удовлетворяет тем условиям, которые установлены для объёма (§ 82). В самом деле, при таком определении объёма равные параллелепипеды, очевидно, имеют равные объёмы. Следовательно, первое условие (§ 82) выполняется. Разобьём теперь данный параллелепипед Q плоскостью, параллельной его основанию, надвое: Q 1 и Q 2 (черт. 90).

Тогда будем иметь:

объём Q = АВ АС АD,
объём Q 1 = АВ АА 1 АD,
объём Q 2 = А 1 В 1 А 1 С А 1 D 1 .

Складывая почленно два последних равенства и замечая, что А 1 В 1 = АВ и А 1 D 1 =АD, получим:

объём Q 1 +объём Q 2 = АВ АА 1 АD+АВ А 1 С АD = АВ АD (АА 1 + А 1 С) = АВ АD АC, отсюда получаем:

объём Q 1 +объём Q 2 = объёму Q.

Следовательно, и второе условие § 82 тоже выполняется, если параллелепипед складывать из двух частей, полученных разрезанием его плоскостью, параллельной одной из граней.

85. Следствие. Пусть измерения прямоугольного параллелепипеда, служащие сторонами его основания, выражаются числами а и b , а третье измерение (высота)-числом с . Тогда, обозначая объём его в соответствующих кубических единицах буквой V, можем написать:

V = аbс .

Так как произведение аb выражает площадь основания, то можнo сказать, что объём прямоугольного параллелепипеда равен произведению площади основания на высоту .

Замечание. Отношение двух кубических единиц разных названий равно третьей степени отношения тех линейных единиц, которые служат рёбрами для этих кубических единиц. Так, отношение кубического метра к кубическому дециметру равно 10 3 , т. е. 1000. Поэтому, например, если мы имеем куб с ребром длиной а линейных единиц и другой куб с ребром длиной 3а линейных единиц, то отношение их объёмов будет равно 3 3 , т. е. 27, что ясно видно из чертежа 91.

86. Лемма. Наклонная призма равновелика такой прямой призме, основание которой равно перпендикулярному сечению наклонной призмы, а высота - её боковому ребру.

Пусть дана наклонная призма ABCDEA 1 B 1 C 1 D 1 E 1 (черт. 92).

Продолжим все её боковые рёбра и боковые грани в одном направлении.

Возьмём на продолжении одного какого-нибудь ребра произвольную точку а и проведём через неё перпендикулярное сечение abcde . Затем, отложив аа 1 = АА 1 , проведём через а 1 перпендикулярное сечение a 1 b 1 c 1 d 1 e 1 . Так как плоскости обоих сечений параллельны, то bb 1 = сс 1 = dd 1 = ее 1 = аа 1 = АА 1 (§17). Вследствие этого многогранник a 1 d , у которого за основания приняты проведённые нами сечения, есть прямая призма, о которой говорится в теореме.

Докажем, что данная наклонная призма равновелика этой прямой. Для этого предварительно убедимся, что многогранники a D и a 1 D 1 равны. Основания их abcde и a 1 b 1 c 1 d 1 e 1 равны как основания призмы a 1 d ; с другой стороны, прибавив к обеим частям равенства А 1 А = а 1 а по одному и тому же отрезку прямой А 1 а , получим: а А = а 1 А 1 ; подобно этому b В = b 1 В 1 , с С = с 1 С 1 и т. д. Вообразим теперь, что многогранник a D вложен в многогранник a 1 D 1 так, что основания их совпали; тогда боковые рёбра, будучи перпендикулярны к основаниям и соответственно равны, также совпадут; поэтому многогранник a D совместится с многогранником a 1 D 1 ; значит, эти тела равны. Теперь заметим, что если к прямой призме a 1 d добавим многогранник a D, а к наклонной призме A 1 D добавим многогранник a 1 D 1 , равный a D, то получим один и тот же многогранник a 1 D. Из этого следует, что две призмы A 1 D и a 1 d равновелики.

87. Теорема. Объём параллелепипеда равен произведению площади основания на высоту.

Ранее мы доказали эту теорему для параллелепипеда п р я м о у г о л ь н о г о, теперь докажем её для параллелепипеда п р я м о г о, а потом и н а к л о н н о г о.

1). Пусть (черт. 93) АС 1 - прямой параллелепипед, т. е. такой, у которого основание ABCD - какой-нибудь параллелограмм, а все боковые грани - прямоугольники.

Возьмём в нём за основание боковую грань АА 1 В 1 В; тогда параллелепипед будет
н а к л о н н ы й. Рассматривая его как частный случай наклонной п р и з м ы, мы на основании леммы предыдущего параграфа можем утверждать, что этот параллелепипед равновелик такому прямому параллелепипеду, у которого основание есть перпендикулярное сечение MNPQ, а высота ВС. Четырёхугольник MNPQ- прямоугольник, потому что его углы служат линейными углами прямых двугранных углов; поэтому прямой параллелепипед, имеющий основанием прямоугольник MNPQ, должен быть прямоугольным и, следовательно, его объём равен произведению трёх его измерений, за которые можно принять отрезки МN, МQ и ВС. Таким образом,

объём AС 1 = МN МQ ВС = МN (МQ ВС).

Но произведение МQ ВС выражает площадь параллелограмма АВСD, поэтому

объём АСХ = (площади АВСD) МN = (площади АВСD) ВВ 1 .

2) Пусть (черт. 94) АС 1 - наклонный параллелепипед.

Он равновелик такому прямому, у которого основанием служит перпендикулярное сечение МNРQ (т. е. перпендикулярное к рёбрам АD, ВС, . . .), а высотой - ребро ВС. Но, по доказанному, объём прямого параллелепипеда равен произведению площади основания на высоту; значит,

объём АС 1 = (площади МNРQ) ВС.

Если RS есть высота сечения МNРQ, то площадь МNРQ = МQ RS, поэтому

объём АС 1 = МQ RS ВС = (ВС MQ) RS.

Произведение ВС MQ выражает площадь параллелограмма АВСD; следовательно, объём АС 1 = (площади АВСОD) RS.

Остаётся теперь доказать, что отрезок RS представляет собой высоту параллелепипеда. Действительно, сечение МNРQ, будучи перпендикулярно к рёбрам ВС, В 1 С 1 , .. . , должно быть перпендикулярно к граням АВСD, ВВ 1 С 1 С, .... проходящим через эти рёбра (§ 43). Поэтому если мы из точки S восставим перпендикуляр к плоскости АВСD, то он должен лежать весь в плоскости МNРQ (§ 44) и, следовательно, должен слиться с прямой RS, лежащей в этой плоскости и перпендикулярной к МQ. Значит, отрезок SR есть высота параллелепипеда. Таким образом, объем и наклонного параллелепипеда равен произведению площади основания на высоту.

Следствие. Если V, В и H суть числа, выражающие в соответствующих единицах объём, площадь основания и высоту параллелепипеда, то можно написать.

ОБЪЕМ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА Объем прямоугольного параллелепипеда равен произведению трех его измерений, т. е. имеет место формула

Упражнение 1 Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите объем параллелепипеда. Ответ: 6.

Упражнение 2 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 3. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Ответ: 1, 5.

Упражнение 3 Площадь грани прямоугольного параллелепипеда равна 2. Ребро, перпендикулярное этой грани, равно 3. Найдите объем параллелепипеда. Ответ: 6.

Упражнение 4 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Диагональ параллелепипеда равна 3. Найдите объем параллелепипеда. Ответ: 4.

Упражнение 6 Во сколько раз увеличится объем куба, если его ребро увеличить в два раза? Ответ: В 8 раз.

Упражнение 9 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 10. Найдите объем параллелепипеда. Ответ: 2.

Упражнение 10 Ребро прямоугольного параллелепипеда равно 1. Диагональ равна 3. Площадь поверхности параллелепипеда равна 16. Найдите объем параллелепипеда. Ответ: 4.

Упражнение 12 Площади трех граней прямоугольного параллелепипеда равны 1, 2, 3. Найдите объем параллелепипеда. Объем параллелепипеда равен Ответ:

Упражнение 19 Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда. Решение: Ребра параллелепипеда равны 2, 2 и 1. Его объем равен 4.

Упражнение 20 Параллелепипед описан около единичной сферы. Найдите его объем. Решение: Ребра параллелепипеда равны 2. Его объем равен 8.

Упражнение 21 Найдите объем куба, вписанного в единичный октаэдр. Решение: Ребро куба равно Объем куба равен

Упражнение 22 Найдите объем куба, описанного около единичного октаэдра. Решение: Ребро куба равно Объем куба равен

Упражнение 23 Найдите объем куба, вписанного в единичный додекаэдр. Решение: Ребро куба равно Объем куба равен

Упражнение 24 Могут ли площади всех граней параллелепипеда быть меньше 1, а объем параллелепипеда быть больше 100? Ответ: Нет, объем будет меньше 1.

Упражнение 25 Могут ли площади всех граней параллелепипеда быть больше 100, а объем параллелепипеда быть меньше 1? Ответ: Да.

Упражнение 27 Четыре грани параллелепипеда – прямоугольники со сторонами 1 и 2. Какой наибольший объем может иметь этот параллелепипед? Решение. Искомым параллелепипедом является прямоугольный параллелепипед, у которого две оставшиеся грани – квадраты со стороной 2. Его объем равен 4. Ответ: 4.

Какой наибольший объем может иметь параллелепипед, вписанный в прямой цилиндр, радиус основания и высота которого равны 1? Ответ: 2.

Если говорить просто, то это овощи, приготовленные в воде по специальному рецепту. Я буду рассматривать два исходных компонента (овощной салат и воду) и готовый результат - борщ. Геометрически это можно представить как прямоугольник, в котором одна сторона обозначает салат, вторая сторона обозначает воду. Сумма этих двух сторон будет обозначать борщ. Диагональ и площадь такого "борщевого" прямоугольника являются чисто математическими понятиями и никогда не используются в рецептах приготовления борща.


Как салат и вода превращаются в борщ с точки зрения математики? Как сумма двух отрезков может превратиться в тригонометрию? Чтобы понять это, нам понадобятся линейные угловые функции.


В учебниках математики вы ничего не найдете о линейных угловых функциях. А ведь без них не может быть математики. Законы математики, как и законы природы, работают независимо от того, знаем мы о их существовании или нет.

Линейные угловые функции - это законы сложения. Посмотрите, как алгебра превращается в геометрию, а геометрия превращается в тригонометрию.

Можно ли обойтись без линейных угловых функций? Можно, ведь математики до сих пор без них обходятся. Хитрость математиков заключается в том, что они всегда рассказывают нам только о тех задачах, которые они сами умеют решать, и никогда не рассказывают о тех задачах, которые они решать не умеют. Смотрите. Если нам известен результат сложения и одно слагаемое, для поиска другого слагаемого мы используем вычитание. Всё. Других задач мы не знаем и решать не умеем. Что делать в том случае, если нам известен только результат сложения и не известны оба слагаемые? В этом случае результат сложения нужно разложить на два слагаемых при помощи линейных угловых функций. Дальше мы уже сами выбираем, каким может быть одно слагаемое, а линейные угловые функции показывают, каким должно быть второе слагаемое, чтобы результат сложения был именно таким, какой нам нужен. Таких пар слагаемых может быть бесконечное множество. В повседневной жизни мы прекрасно обходимся без разложения суммы, нам достаточно вычитания. А вот при научных исследованиях законов природы разложение суммы на слагаемые очень может пригодиться.

Ещё один закон сложения, о котором математики не любят говорить (ещё одна их хитрость), требует, чтобы слагаемые имели одинаковые единицы измерения. Для салата, воды и борща это могут быть единицы измерения веса, объема, стоимости или единицы измерения.

На рисунке показаны два уровня различий для математических . Первый уровень - это различия в области чисел, которые обозначены a , b , c . Это то, чем занимаются математики. Второй уровень - это различия в области единиц измерения, которые показаны в квадратных скобках и обозначены буквой U . Этим занимаются физики. Мы же можем понимать третий уровень - различия в области описываемых объектов. Разные объекты могут иметь одинаковое количество одинаковых единиц измерения. Насколько это важно, мы можем увидеть на примере тригонометрии борща. Если мы добавим нижние индексы к одинаковому обозначению единиц измерения разных объектов, мы сможем точно говорить, какая математическая величина описывает конкретный объект и как она изменяется с течением времени или в связи с нашими действиями. Буквой W я обозначу воду, буквой S обозначу салат и буквой B - борщ. Вот как будут выглядеть линейные угловые функции для борща.

Если мы возьмем какую-то часть воды и какую-то часть салата, вместе они превратятся в одну порцию борща. Здесь я предлагаю вам немного отвлечься от борща и вспомнить далекое детство. Помните, как нас учили складывать вместе зайчиков и уточек? Нужно было найти, сколько всего зверушек получится. Что же нас тогда учили делать? Нас учили отрывать единицы измерения от чисел и складывать числа. Да, одно любое число можно сложить с другим любым числом. Это прямой путь к аутизму современной математики - мы делаем непонятно что, непонятно зачем и очень плохо понимаем, как это относится к реальности, ведь из трех уровней различия математики оперируют только одним. Более правильно будет научиться переходить от одних единиц измерения к другим.

И зайчиков, и уточек, и зверушек можно посчитать в штуках. Одна общая единица измерения для разных объектов позволяет нам сложить их вместе. Это детский вариант задачи. Давайте посмотрим на похожую задачу для взрослых. Что получится, если сложить зайчиков и деньги? Здесь можно предложить два варианта решения.

Первый вариант . Определяем рыночную стоимость зайчиков и складываем её с имеющейся денежной суммой. Мы получили общую стоимость нашего богатства в денежном эквиваленте.

Второй вариант . Можно количество зайчиков сложить с количеством имеющихся у нас денежных купюр. Мы получим количество движимого имущества в штуках.

Как видите, один и тот же закон сложения позволяет получить разные результаты. Всё зависит от того, что именно мы хотим знать.

Но вернемся к нашему борщу. Теперь мы можем посмотреть, что будет происходить при разных значениях угла линейных угловых функций.

Угол равен нулю. У нас есть салат, но нет воды. Мы не можем приготовить борщ. Количество борща также равно нулю. Это совсем не значит, что ноль борща равен нулю воды. Ноль борща может быть и при нуле салата (прямой угол).


Лично для меня, это основное математическое доказательство того факта, что . Ноль не изменяет число при сложении. Это происходит потому, что само сложение невозможно, если есть только одно слагаемое и отсутствует второе слагаемое. Вы к этому можете относиться как угодно, но помните - все математические операции с нулем придумали сами математики, поэтому отбрасывайте свою логику и тупо зубрите определения, придуманные математиками: "деление на ноль невозможно", "любое число, умноженное на ноль, равняется нулю", "за выколом точки ноль" и прочий бред. Достаточно один раз запомнить, что ноль не является числом, и у вас уже никогда не возникнет вопрос, является ноль натуральным числом или нет, потому что такой вопрос вообще лишается всякого смысла: как можно считать числом то, что числом не является. Это всё равно, что спрашивать, к какому цвету отнести невидимый цвет. Прибавлять ноль к числу - это то же самое, что красить краской, которой нет. Сухой кисточкой помахали и говорим всем, что " мы покрасили". Но я немного отвлекся.

Угол больше нуля, но меньше сорока пяти градусов. У нас много салата, но мало воды. В результате мы получим густой борщ.

Угол равен сорок пять градусов. Мы имеем в равных количествах воду и салат. Это идеальный борщ (да простят меня повара, это просто математика).

Угол больше сорока пяти градусов, но меньше девяноста градусов. У нас много воды и мало салата. Получится жидкий борщ.

Прямой угол. У нас есть вода. От салата остались только воспоминания, поскольку угол мы продолжаем измерять от линии, которая когда-то обозначала салат. Мы не можем приготовить борщ. Количество борща равно нулю. В таком случае, держитесь и пейте воду, пока она есть)))

Вот. Как-то так. Я могу здесь рассказать и другие истории, которые будут здесь более чем уместны.

Два друга имели свои доли в общем бизнесе. После убийства одного из них, всё досталось другому.

Появление математики на нашей планете.

Все эти истории на языке математики рассказаны при помощи линейных угловых функций. Как-нибудь в другой раз я покажу вам реальное место этих функций в структуре математики. А пока, вернемся к тригонометрии борща и рассмотрим проекции.

суббота, 26 октября 2019 г.

Просмотрел интересное видио про ряд Гранди Один минус один плюс один минус один - Numberphile . Математики врут. Они не выполнили проверку равенства в ходе своих рассуждений.

Это перекликается с моими рассуждениями о .

Давайте более детально рассмотрим признаки обмана нас математиками. В самом начале рассуждений, математики говорят, что сумма последовательности ЗАВИСИТ от того, четное количество элементов в ней или нет. Это ОБЪЕКТИВНО УСТАНОВЛЕННЫЙ ФАКТ. Что происходит дальше?

Дальше математики из единицы вычитают последовательность. К чему это приводит? Это приводит к изменению количества элементов последовательности - четное количество изменяется на нечетное, нечетное изменяется на четное. Ведь мы добавили к последовательности один элемент, равный единице. Несмотря на всю внешнюю схожесть, последовательность до преобразования не равна последовательности после преобразования. Даже если мы рассуждаем о бесконечной последовательности, необходимо помнить, что бесконечная последовательность с нечетным количеством элементов не равна бесконечной последовательности с четным количеством элементов.

Ставя знак равенства между двумя разными по количеству элементов последовательностями, математики утверждают, что сумма последовательности НЕ ЗАВИСИТ от количества элементов в последовательности, что противоречит ОБЪЕКТИВНО УСТАНОВЛЕННОМУ ФАКТУ. Дальнейшие рассуждения о сумме бесконечной последовательности являются ложными, поскольку основаны на ложном равенстве.

Если вы видите, что математики в ходе доказательств расставляют скобки, переставляют местами элементы математического выражения, что-нибудь добавляют или убирают, будьте очень внимательны, скорее всего вас пытаются обмануть. Как карточные фокусники, математики различными манипуляциями с выражением отвлекают ваше внимание, чтобы в итоге подсунуть вам ложный результат. Если карточный фокус вы не можете повторить, не зная секрета обмана, то в математике всё гораздо проще: вы даже ничего не подозреваете об обмане, но повторение всех манипуляций с математическим выражением позволяет вам убедить других в правильности полученного результата, точно так же, как когда-то убедили вас.

Вопрос из зала: А бесконечность (как количество элементов в последовательности S), она четная или нечётная? Как можно поменять четность у того, что четности не имеет?

Бесконечность для математиков, как Царство Небесное для попов - никто никогда там не был, но все точно знают, как там всё устроено))) Согласен, после смерти вам будет абсолютно безразлично, четное или нечетное количество дней вы прожили, но... Добавив всего один день в начало вашей жизни, мы получим совсем другого человека: фамилия, имя и отчество у него точно такие же, только дата рождения совсем другая - он родился за один день до вас.

А теперь по существу))) Допустим, конечная последовательность, имеющая четность, теряет эту четность при переходе к бесконечности. Тогда и любой конечный отрезок бесконечной последовательности должен потерять четность. Мы этого не наблюдаем. То, что мы не можем точно сказать, четное или нечетное количество элементов у бесконечной последовательности, совсем не означает, что четность исчезла. Не может четность, если она есть, бесследно исчезнуть в бесконечности, как в рукаве шулера. Для этого случая есть очень хорошая аналогия.

Вы никогда не спрашивали у кукушки, сидящей в часах, в каком направлении вращается стрелка часов? Для неё стрелка вращается в обратном направлении тому, которое мы называем "по часовой стрелке". Как это не парадоксально звучит, но направление вращения зависит исключительно от того, с какой стороны мы вращение наблюдаем. И так, у нас есть одно колесо, которое вращается. Мы не можем сказать, в каком направлении происходит вращение, поскольку мы его можем наблюдать как с одной стороны плоскости вращения, так и с другой. Мы можем только засвидетельствовать факт, что вращение есть. Полная аналогия с четностью бесконечной последовательности S .

Теперь добавим второе вращающееся колесо, плоскость вращения которого параллельна плоскости вращения первого вращающегося колеса. Мы по прежнему не можем точно сказать, в каком направлении вращаются эти колеса, но мы абсолютно точно можем сказать, вращаются оба колеса в одну сторону или в противоположные. Сравнивая две бесконечные последовательности S и 1-S , я при помощи математики показал, что у этих последовательностей разная четность и ставить знак равенства между ними - это ошибка. Лично я верю математике, я не доверяю математикам))) Кстати, для полного понимания геометрии преобразований бесконечных последовательностей, необходимо вводить понятие "одновременность" . Это нужно будет нарисовать.

среда, 7 августа 2019 г.

Завершая разговор о , нужно рассмотреть бесконечное множество. Дало в том, что понятие "бесконечность" действует на математиков, как удав на кролика. Трепетный ужас перед бесконечностью лишает математиков здравого смысла. Вот пример:

Первоисточник находится . Альфа обозначает действительное число. Знак равенства в приведенных выражениях свидетельствует о том, что если к бесконечности прибавить число или бесконечность, ничего не изменится, в результате получится такая же бесконечность. Если в качестве примера взять бесконечное множество натуральных чисел, то рассмотренные примеры можно представить в таком виде:

Для наглядного доказательства своей правоты математики придумали много разных методов . Лично я смотрю на все эти методы, как на пляски шаманов с бубнами. По существу, все они сводятся к тому, что либо часть номеров не занята и в них заселяются новые гости, либо к тому, что часть посетителей вышвыривают в коридор, чтобы освободить место для гостей (очень даже по-человечески). Свой взгляд на подобные решения я изложил в форме фантастического рассказа о Блондинке. На чем основываются мои рассуждения? Переселение бесконечного количества посетителей требует бесконечно много времени. После того, как мы освободили первую комнату для гостя, один из посетителей всегда будет идти по коридору из своего номера в соседний до скончания века. Конечно, фактор времени можно тупо игнорировать, но это уже будет из разряда "дуракам закон не писан". Всё зависит от того, чем мы занимаемся: подгоняем реальность под математические теории или наоборот.

Что же такое "бесконечная гостиница"? Бесконечная гостиница - это гостиница, в которой всегда есть любое количество свободных мест, независимо от того, сколько номеров занято. Если все номера в бесконечном коридоре "для посетителей" заняты, есть другой бесконечный коридор с номерами "для гостей". Таких коридоров будет бесконечное множество. При этом у "бесконечной гостиницы" бесконечное количество этажей в бесконечном количестве корпусов на бесконечном количестве планет в бесконечном количестве вселенных, созданных бесконечным количеством Богов. Математики же не способны отстраниться от банальных бытовых проблем: Бог-Аллах-Будда - всегда только один, гостиница - она одна, коридор - только один. Вот математики и пытаются подтасовывать порядковые номера гостиничных номеров, убеждая нас в том, что можно "впихнуть невпихуемое".

Логику своих рассуждений я вам продемонстрирую на примере бесконечного множества натуральных чисел. Для начала нужно ответить на очень простой вопрос: сколько множеств натуральных чисел существует - одно или много? Правильного ответа на это вопрос не существует, поскольку числа придумали мы сами, в Природе чисел не существует. Да, Природа отлично умеет считать, но для этого она использует другие математические инструменты, не привычные для нас. Как Природа считает, я вам расскажу в другой раз. Поскольку числа придумали мы, то мы сами будем решать, сколько множеств натуральных чисел существует. Рассмотрим оба варианта, как и подобает настоящим ученым.

Вариант первый. "Пусть нам дано" одно-единственное множество натуральных чисел, которое безмятежно лежит на полочке. Берем с полочки это множество. Всё, других натуральных чисел на полочке не осталось и взять их негде. Мы не можем к этому множеству прибавить единицу, поскольку она у нас уже есть. А если очень хочется? Без проблем. Мы можем взять единицу из уже взятого нами множества и вернуть её на полочку. После этого мы можем взять с полочки единицу и прибавить её к тому, что у нас осталось. В результате мы снова получим бесконечное множество натуральных чисел. Записать все наши манипуляции можно так:

Я записал действия в алгебраической системе обозначений и в системе обозначений, принятой в теории множеств, с детальным перечислением элементов множества. Нижний индекс указывает на то, что множество натуральных чисел у нас одно и единственное. Получается, что множество натуральных чисел останется неизменным только в том случае, если из него вычесть единицу и прибавить эту же единицу.

Вариант второй. У нас на полочке лежит много разных бесконечных множеств натуральных чисел. Подчеркиваю - РАЗНЫХ, не смотря на то, что они практически не отличимы. Берем одно из этих множеств. Потом из другого множества натуральных чисел берем единицу и прибавляем к уже взятому нами множеству. Мы можем даже сложить два множества натуральных чисел. Вот что у нас получится:

Нижние индексы "один" и "два" указывают на то, что эти элементы принадлежали разным множествам. Да, если к бесконечному множеству прибавить единицу, в результате получится тоже бесконечное множество, но оно не будет таким же, как первоначальное множество. Если к одному бесконечному множеству прибавить другое бесконечное множество, в результате получится новое бесконечное множество, состоящее из элементов первых двух множеств.

Множество натуральных чисел используется для счета так же, как линейка для измерений. Теперь представьте, что к линейке вы добавили один сантиметр. Это уже будет другая линейка, не равная первоначальной.

Вы можете принимать или не принимать мои рассуждения - это ваше личное дело. Но если когда-то вы столкнетесь с математическими проблемами, задумайтесь, не идете ли вы по тропе ложных рассуждений, протоптанной поколениями математиков. Ведь занятия математикой, прежде всего, формируют у нас устойчивый стереотип мышления, а уже потом добавляют нам умственных способностей (или наоборот, лишают нас свободомыслия).

pozg.ru

воскресенье, 4 августа 2019 г.

Дописывал постскриптум к статье о и увидел в Википедии этот замечательный текст:

Читаем: "... богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приемов, лишенных общей системы и доказательной базы."

Вау! Какие мы умные и как хорошо можем видеть недостатки других. А слабо нам посмотреть на современную математику в таком же разрезе? Слегка перефразируя приведенный текст, лично у меня получилось следующее:

Богатая теоретическая основа современной математики не имеет целостного характера и сводится к набору разрозненных разделов, лишенных общей системы и доказательной базы.

За подтверждением своих слов я далеко ходить не буду - имеет язык и условные обозначения, отличные от языка и условных обозначений многих других разделов математики. Одни и те же названия в разных разделах математики могут иметь разный смысл. Наиболее очевидным ляпам современной математики я хочу посвятить целый цикл публикаций. До скорой встречи.

суббота, 3 августа 2019 г.

Как разделить множество на подмножества? Для этого необходимо ввести новую единицу измерения, присутствующую у части элементов выбранного множества. Рассмотрим пример.

Пусть у нас есть множество А , состоящее из четырех человек. Сформировано это множество по признаку "люди" Обозначим элементы этого множества через букву а , нижний индекс с цифрой будет указывать на порядковый номер каждого человека в этом множестве. Введем новую единицу измерения "половой признак" и обозначим её буквой b . Поскольку половые признаки присущи всем людям, умножаем каждый элемент множества А на половой признак b . Обратите внимание, что теперь наше множество "люди" превратилось в множество "люди с половыми признаками". После этого мы можем разделить половые признаки на мужские bm и женские bw половые признаки. Вот теперь мы можем применить математический фильтр: выбираем один из этих половых признаков, безразлично какой - мужской или женский. Если он присутствует у человека, тогда умножаем его на единицу, если такого признака нет - умножаем его на ноль. А дальше применяем обычную школьную математику. Смотрите, что получилось.

После умножения, сокращений и перегруппировок, мы получили два подмножества: подмножество мужчин Bm и подмножество женщин Bw . Приблизительно так же рассуждают математики, когда применяют теорию множеств на практике. Но в детали они нас не посвящают, а выдают готовый результат - "множество людей состоит из подмножества мужчин и подмножества женщин". Естественно, у вас может возникнуть вопрос, насколько правильно применена математика в изложенных выше преобразованиях? Смею вас заверить, по сути преобразований сделано всё правильно, достаточно знать математическое обоснование арифметики, булевой алгебры и других разделов математики. Что это такое? Как-нибудь в другой раз я вам об этом расскажу.

Что касается надмножеств, то объединить два множества в одно надмножество можно, подобрав единицу измерения, присутствующую у элементов этих двух множеств.

Как видите, единицы измерения и обычная математика превращают теорию множеств в пережиток прошлого. Признаком того, что с теорией множеств не всё в порядке, является то, что для теории множеств математики придумали собственный язык и собственные обозначения. Математики поступили так, как когда-то поступали шаманы. Только шаманы знают, как "правильно" применять их "знания". Этим "знаниям" они обучают нас.

В заключение, я хочу показать вам, как математики манипулируют с
Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.
Покажу процесс на примере. Отбираем "красное твердое в пупырышку" - это наше "целое". При этом мы видим, что эти штучки есть с бантиком, а есть без бантика. После этого мы отбираем часть "целого" и формируем множество "с бантиком". Вот так шаманы добывают себе корм, привязывая свою теорию множеств к реальности.

А теперь сделаем маленькую пакость. Возьмем "твердое в пупырышку с бантиком" и объединим эти "целые" по цветовому признаку, отобрав красные элементы. Мы получили множество "красное". Теперь вопрос на засыпку: полученные множества "с бантиком" и "красное" - это одно и то же множество или два разных множества? Ответ знают только шаманы. Точнее, сами они ничего не знают, но как скажут, так и будет.

Этот простой пример показывает, что теория множеств совершенно бесполезна, когда речь заходит о реальности. В чем секрет? Мы сформировали множество "красное твердое в пупырышку с бантиком". Формирование происходило по четырем разным единицам измерения: цвет (красное), прочность (твердое), шероховатость (в пупырышку), украшения (с бантиком). Только совокупность единиц измерения позволяет адекватно описывать реальные объекты на языке математики . Вот как это выглядит.

Буква "а" с разными индексами обозначает разные единицы измерения. В скобках выделены единицы измерения, по которым выделяется "целое" на предварительном этапе. За скобки вынесена единица измерения, по которой формируется множество. Последняя строчка показывает окончательный результат - элемент множества. Как видите, если применять единицы измерения для формирования множества, тогда результат не зависит от порядка наших действий. А это уже математика, а не пляски шаманов с бубнами. Шаманы могут "интуитивно" придти к такому же результату, аргументируя его "очевидностью", ведь единицы измерения не входят в их "научный" арсенал.

При помощи единиц измерения очень легко разбить одно или объединить несколько множеств в одно надмножество. Давайте более внимательно рассмотрим алгебру этого процесса.

showPlots(;0 noAxes0 );

Рис. 2.1: Два параллелепипеда

2.0.6 Единица объёма.

За единицу объемов при измерении их берут объем такого куба, у которого каждое ребро равно линейной единице. Так, употребительны кубические метры (m3 ), кубические сантиметры (cm3 ) и т.д.

2.1 Объем параллелепипеда.

2.1.1 Теорема об объеме правильного прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению трех его измерений.

В таком кратком выражении теорему эту надо понимать так: число, выражающее объем прямоугольного параллелепипеда в кубической единице, равно произведению чисел, выражающих три его измерения в соответствующей линейной единице, т.е. в единице, являющейся ребром куба, объем которого принят за кубическую единицу. Так, если x есть число, выражающее объем прямоугольного параллелепипеда в кубических сантиметрах, и a; b и c

числа, выражающие три его измерения в линейных сантиметрах, то теорема утверждает, что x = abc При доказательстве рассмотрим особо следующие три случая: 1) Измерения выражаются целыми числами. Пусть, например, измерения, будут (2.2) AB = a; BC = b и BD = c, где a; b и c какие-нибудь целые числа (например, как изображено у нас на рисунке: a = 4; b = 2 и c = 5). Тогда основание параллелепипеда содержит ab таких квадратов, из которых каждый представляет собой соответствующую квадратную единицу. На каждом из этих квадратов, очевидно, можно поместить по одной кубической единице. Тогда получится слой (изображенный на 2.2), состоящий из ab кубических единиц. Так как высота этого слоя равна одной линейной единице, а высота всего параллелепипеда содержит c таких единиц, то внутри параллелепипеда можно поместить c таких слоев. Следовательно, объем этого параллелепипеда равен abc кубических единиц. 2) Измерения выражаются дробными числами. Пусть измерения параллелепипеда будут:

m n ; p q ; r s

(некоторые из этих дробей могут равняться целому числу). Приведя дроби к одинаковому знаменателю, будем иметь:

mqs ngs ; pns qns; rnq snq:

Примем nqs 1 долю линейной единицы за новую (вспомогательную) едини-

цу длины. Тогда в этой новой единице измерения данного параллелепипеда выразятся целыми числами, а именно:

(mqs) (pns) (rnq);

и потому по доказанному (в случае 1) объем параллелепипеда равен произведению (mqs) (pns) (rnq), если измерять этот объем новой кубической единицей, соответствующей новой линейной единице. Таких кубических еди-

ниц в одной кубической единице, соответствующей прежней линейной едини- q

це, содержится (nqs)3 ; значит, новая кубическая единица составляет (nqs) 3

прежней. Поэтому объем параллелепипеда, выраженный в прежних единицах, равен

(mqs) (pns) (rnq) =

(nqs)3

3) Измерения выражаются иррациональными числами. Пусть у данного параллелепипеда (2.3), который для краткости мы обозначим одной буквой Q, измерения будут:

AB = ; AC = ; AD = ;

где все числа; и или только некоторые из них иррациональные. Каждое из чисел; и может быть представлено в виде бесконечной десятичной дроби. Возьмем приближенные значения этих дробей с n десятичными знаками сначала с недостатком, а затем с избытком. Значения с недостатком обозначим n ; n ; n значения с избытком n 0 ; n 0 ; n 0 . Отложим на ребре AB, начиная от точки A, два отрезка AB1 = n и AB2 = n 0 . На ребре AC от той же точки A отложим отрезки AC1 = n и AC2 = n 0 и на ребре AD от той же точки отрезки AD1 = n и n 0 . При этом мы будем иметь

AB1 < AB < AB2 ; AC1 < AC < AC2 ; AD1 < AD < AD2 :

Построим теперь два вспомогательных параллелепипеда: один (обозначим его Q1 ) с измерениями AB1 ; AC1 и AD1 и другой (обозначим его Q2 ) с измерениями AB2 ; AC2 и AD2 . Параллелепипед Q1 будет весь помещаться внутри параллелепипеда Q, а параллелепипед Q2 будет содержать внутри себя параллелепипед Q. По доказанному (в случае 2) будем иметь:

Q1 = n n n ; (1)

Q2 = n 0 n 0 n 0 ; (2)

причем объем Q1 < объема Q2 .

Начнем теперь увеличивать число n. Это значит, что мы берем приближенные значения чисел; ; gamma все с большей и большей степенью точности. Посмотрим, как при этом изменяются объемы параллелепипедов Q1

и Q 2 При неограниченном возрастании n объём Q1 , очевидно, увеличивается

и в силу равенства (1) при беспредельном увеличении n имеет своим пре-

делом предел произведения(n ; n ; n ). Объем Q2 , очевидно уменьшается и

в силу равенства (2) имеет пределом предел произведения n 0 ; n 0 ; n 0 . Но из алгебры известно, что оба произведения n ; n ; n и n 0 ; n 0 ; n 0 при неограниченном увеличении п имеют общий предел, который является произведением иррациональных чисел Этот предел мы и принимаем за меру объема параллелепипеда Q: объём Q = . Можно доказать, что определенный таким образом объем удовлетворяет тем условиям, которые установлены для объема. В самом деле, при таком определении объема равные параллелепипеды, очевидно, имеют равные объемы. Следовательно, первое условие выполняется. Разобьем теперь данный параллелепипед Q плоскостью, параллельной его основанию, надвое: Q1 и Q2 (2.4). Тогда будем иметь:

Q1 = AB AC AD;

Q2 = AB AA1 AD;

Q3 = A1 B1 A1 C A1 D1 :

Складывая почленно два последних равенства и замечая, что A1 B1 = AB и A1 D1 = AD, получим объем Q1 + объем Q2 = AB AA1 AD + AB A1 C AD = AB AD(AA1 + A1 C) = AB AD AC, отсюда получаем:

Q1 + Q2 = Q:

Следовательно, и второе условие тоже выполняется, если параллелепипед складывать из двух частей, полученных разрезанием его плоскостью, параллельной одной из граней.

set2D(0; 20; 4; 20);

;0 dash0 );

;0 dash0 );

;0 dash0 );

dash0 );

p8 = pointsPlot(4

[ 0A 0; 0 B 0; 0 C 0; 0 a 0; 0 b 0; 0 c 0; 0 D 0];

showPlots(;0 noAxes0 );

set2D(3; 12; 2; 13);

;0 dash0 );

;0 dash0 );

Рис. 2.2: Параллелепипед

;0 dash0 );

dash0 );

;0 dash0 );

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

С пятого класса нам известна формула нахождения объема прямоугольного параллелепипеда. Сегодня мы вспомним эту формулу и докажем теорему «Объем прямоугольного параллелепипеда»

Докажем теорему: Объем прямоугольного параллелепипеда равен произведению трех его измерений.

Дано: параллелепипед

а, b, c — его измерения.

V - объем параллелепипеда.

Доказать: V = abc.

Доказательство:

1. Пусть а, b, c - конечные десятичные дроби, где число знаков после запятой не больше n (n > 1).

Тогда Числа а. 10n , b . 10n, c . 10n - целые.

Разобьем каждое ребро параллелепипеда на равные отрезки длиной и через точки разбиения проведем плоскости, перпендикулярные ребрам.

Параллелепипед разобьется на abc.103n равных кубиков с ребром. Найдем объем каждого маленького кубика будет равен равно единица, деленная на десять в n-ой степени, возведенная в куб. Возведя числитель и знаменатель в куб, получаем (единица в кубе равна единице, а 10 в n-ой степени в кубе равно 10 в степени 3n) частное единицы и 10 в степени 3n.

Т.к. объем каждого такого кубика равен, а количество этих кубиков аbс умноженное на, то объем прямоугольного параллелепипеда находим умножением количества кубиков на объем маленького кубика Тогда получаем выражение: объем прямоугольного параллелепипеда равен произведению аbс, умноженное на 10 в степени 3n частное единицы и 10 в степени 3n.

Сократим на 10 в степени 3n, получим, что объем прямоугольного параллелепипеда равен abc или произведению трех его измерений.

Итак, V = abc.

2.Докажем, если хотя бы одно из измерений a, b, c - бесконечная десятичная дробь, то объем параллелепипеда также равен произведению трех его измерений.

Пусть аn, bn, cn - конечные десятичные дроби, полученные из чисел a, b, c отбрасыванием в каждом из них всех цифр после запятой, начиная с (n + 1). Тогда а больше или равно а с индексом и меньше или равно а с индексом n штрих

an < a < an",

где а энное штрих равно сумме а энное и единицы, деленной на десять в n-ой степени =

для b и c, запишем аналогичные неравенства и запишем их друг под другом

an < a < an"

bn < b < bn"

cn < c < cn",

Перемножим эти три неравенства, мы получим: произведение abc больше или равно произведению а энного на b энное и на c энное и меньше или равно а энному штрих на b энное штрих и на c энное штрих:

anbncn abc < an"bn"cn". (1)

По доказанному в п. 1., левая часть - объем параллелепипеда со сторонами anbncn , то есть Vn, а правая — объем параллелепипеда со сторонами an"bn"cn", то есть Vn".

Т.к. параллелепипед Р, то есть параллелепипед с измерениями a, b, c содержит в себе параллелепипед Рn, то есть параллелепипед со сторонами an, bn, cn, а сам содержится в параллелепипеде Pn", то есть в параллелепипеде со сторонами an", bn", cn" то объем V параллелепипеда Р заключен между Vn = anbncn и Vn "= an"bn"cn",

т.е. anbncn < V < an"bn"cn". (2)

При неограниченном увеличении n число частное единицы и 10 в степени 3n будет становиться сколь угодно малым, и потому числа anbncn и an"bn"cn" будут сколь угодно мало отличаться друг от друга. Следовательно, число V сколь угодно мало отличается от числа abc. Значит, они равны:

V = abc. Теорема доказана.

Следствие 1. Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Основанием прямоугольного параллелепипеда является прямоугольник. Пусть длина прямоугольника равна а и ширина равна b, высоту обозначим h=c. Тогда площадь прямоугольника ищем по формуле. Подставим в формулу для нахождения объема V = abc вместо произведения пишем. Получаем формулу

Следствие 2. Объем прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

Дана прямоугольная призма, угол А в основании является прямым. Достроим прямоугольную призму до прямоугольного параллелепипеда (смотрите чертеж). Прямоугольный параллелепипед состоит из двух прямоугольных призм, которые равны, так как имеют равные основания и высоты. Соответственно, площадь прямоугольника равна двум площадям прямоугольных треугольников АВС Следовательно, объем прямоугольной призмы равен половине объема прямоугольного параллелепипеда (при умножении) или произведению основания прямоугольного треугольника на высоту.

Задача 1.Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Объем прямоугольного параллелепипеда ищем по формуле:

Данная фигура состоит из двух прямоугольных параллелепипедов.

Пусть — это объем полного параллелепипеда с измерениями 4, 3, 3. Тогда это объем малого «вырезанного» параллелепипеда с измерениями 3, 1, 1.

Чтобы найти объем многогранника, необходимо найти разность объемов V1 и V2

Находим объем V1 как произведение его измерений обозначим их а1, b1, c1, получаем объем его равен

Для малого «вырезанного» параллелепипеда объем V2 равен произведению его измерений, их обозначим как а2, b2, c2 , тогда получим

Теперь найдем объем многогранника V как разность V1 и V2, получим V=

Ответ: V многогранника равен 33

Поделиться