Как можно увеличить силу трения. Средство для увеличения трения – Master Grip (Grepp). А в Российской Федерации…




Движение по скользкой поверхности Ходить по льду нелегко, т.к. трение, возникающее между поверхностью льда и подошвой обуви, мало. Ходить по льду нелегко, т.к. трение, возникающее между поверхностью льда и подошвой обуви, мало. Как можно облегчить хождение по скользкой поверхности? Как можно облегчить хождение по скользкой поверхности?




Опорный конспект ПОЛЬЗА ВРЕД ПОЛЬЗА ВРЕД 1. F тр. пок. – «движущая сила» 1. Препятствует движению 2. «тормозящая сила» 2. Изнашивает поверхность УВЕЛИЧИТЬ УМЕНЬШИТЬ УВЕЛИЧИТЬ УМЕНЬШИТЬ а) шероховатость («песок») а) смазка б) «нагрузить» б) подшипники F тр. кач.


Уменьшение силы трения Во-первых, мы знаем, трение бывает не всегда твердым, хотя именно от него в тысячах ситуаций стремятся избавиться. Например, смазывают детали механизмов и машин, чтобы уменьшить их износ и не терять впустую энергию, уходящую на бесполезный нагрев.




Уменьшение силы трения Подшипники Внутреннее кольцо подшипника насаживают на вал, который при вращении не скользит, а катится на шариках или роликах. Внутреннее кольцо подшипника насаживают на вал, который при вращении не скользит, а катится на шариках или роликах.








Воздушная подушка Суда на воздушной подушке - это аппараты, поддерживающие себя над опорной (земной или водной) поверхностью с помощью воздушной подушки, создаваемой судовыми вентиляторами. В отличие от обычных судов и колесного транспорта суда на воздушной подушке (СВП) не имеют физического контакта с поверхностью, над которой движутся





Анатолий ШМЕЛЕВ

Когда еще в 2004 году я читал лекцию для литовских перевозчиков и дошел до объяснения роли трения, страховщик, который организовал эту лекцию, воскликнул: “Я знаю, как избежать этих глупых убытков: надо в каждую машину раздать по несколько ковриков противоскольжения!». Надеюсь, что и читатель поймет всю важность трения, прочитав эту статью, и примет соответствующие меры.

1. Теория. Классификация основных видов трения

При соприкосновении движущихся (или приходящих в движение) тел с другими телами, а также с частицами вещества окружающей среды возникают силы, препятствующие такому движению. Эти силы называют силами трения . Действие сил трения всегда сопровождается превращением механической энергии во внутреннюю и вызывает нагревание тел и окружающей их среды.

Существует внешнее и внутреннее трение, иначе называемое вязкостью . Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению. В креплении грузов этот вид трения рассматривается только при исследовании современных прокладочных материалов, изготовленных из резины и полимеров. В данной статье мы не будем детально рассматривать внутреннее трение.

Внешнее трение подразделяют на трение покоя (статическое трение ) и кинематическое трение . Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения .

Трение покоя

Наблюдения показывают, что сила трения покоя всегда направлена противоположно действующей на тело внешней силе, стремящейся привести это тело в движение. До определенного момента сила трения покоя увеличивается с возрастанием внешней силы, уравновешивая последнюю.

По третьему закону Ньютона сила F G давления тела на опору равна по модулю силе F N реакции опоры. Поэтому максимальная сила трения покоя пропорциональна силе реакции опоры. Для модулей этих сил справедливо следующее соотношение:

F F =  S F N ,

где  S - безразмерный коэффициент пропорциональности, называемый коэффициентом трения покоя . Значение этого коэффициента зависит от материала и состояния трущихся поверхностей.

Считается, что в состоянии покоя между двумя телами существует притяжение на молекулярном уровне, которое исчезает после начала взаимного движения тел.

При расчетах необходимого крепления согласно «Руководству по укладке грузов в грузовые транспортные единицы» (ГТЕ) принимается к учету именно трение покоя.

Трение скольжения

Трение скольжения возникает при скольжении одного твердого тела по поверхности другого. Закон для трения скольжения имеет вид:

F F =  D F N ,

где F F - модуль силы трения скольжения;  D - безразмерный коэффициент трения скольжения или динамический коэффициент трения; F N - модуль силы реакции опоры. Значение  D зависит от того, из каких веществ изготовлены трущиеся поверхности и от качества их обработки. Если сделать поверхности более гладкими, значение  D уменьшится. Однако уменьшать шероховатость поверхностей можно лишь до определенного предела, так как при очень гладких (например, полированных) поверхностях значение  D вновь увеличивается. Происходит это потому, что молекулы тел с гладкими поверхностями близко подходят друг к другу и силы молекулярного притяжения между ними вызывают "прилипание" тел, препятствующее их скольжению.

Принято считать, что коэффициент трения скольжения равен 70 % коэффициента трения покоя. В какой-то степени это правильно для пар твердых материалов, таких как древесина, металлы и др., но исследования свойств полимерных материалов, увеличивающих трение, показали, что такая зависимость существует не всегда.

Стандарт EN 12195-1 “Устройства крепления груза на автомобилях. Часть 1: Расчет сил крепления” требует, чтобы к расчету принималось трение скольжения. В период транспортирования из-за вибрации грузовая единица совершает микроперемещения, молекулярное притяжение между грузом и грузовой платформой уже нарушено.

Трение качения

Трение качения возникает при качении (без скольжения) твердых тел круглой формы по поверхности других твердых тел. В креплении грузов данный вид трения рассматривается крайне редко. Рекомендуется блокировать колеса и колесики грузовых единиц и применять коэффициенты трения покоя и скольжения. Однако эффект трения качения следует учитывать, когда груз погружен в неподметенное транспортное средство на остатки груза, например гранулы или просто щепки. В этом случае возникает эффект качения, и коэффициент трения качения значительно меньше коэффициента трения скольжения и в некоторых случаях стремится к нулю.

Поэтому наиважнейшим вспомогательным средством крепления в арсенале водителя транспортного средства является щетка.

2. Основные формулы крепления

Условие несмещаемости груза

«Сумма сил трения и крепления равна или больше смещающей силы, возникающей при изменении условий движения (торможение, начало движения, поворот или смена полосы).

При блокировке это условие выглядит следующим образом:

F B + F F = F X , Y ,

F B + F F = F X , Y ,

F B + m c z g = m c x , y g ,

F B = ( c x , y - c z ) m g ,

масса груза;

ускорение свободного падения;

c x , c y , и c z

коэффициент трения.

Мы рассматриваем автомобильную транспортировку, где Cz = 1.

Таким образом, когда сила трения будет равна смещающей силе, т.е. когда соответствующие коэффициенты ускорения равны коэффициенту трения – нет необходимости в дополнительном креплении груза.

При креплении растяжками это условие выглядит следующим образом:

(иллюстрация из стандарта EN 12195-1)

Расчет по стандарту EN 12195-1

Крепление четырехтонного станка от смещения вперед 4 растяжками.

Вертикальный угол установки ремней a = 20 - 65º.

Горизонтальный угол установки ремней b = 6 - 55º.

При коэффициенте трения  = 0,2 требуемая рабочая нагрузка растяжек LC = 4000 daN.

При коэффициенте трения  = 0,3 требуемая рабочая нагрузка растяжек LC = 2000 daN.

При коэффициенте трения  = 0,6 требуемая рабочая нагрузка растяжек LC = 750 daN.

При коэффициенте трения  = 0,8 требуемая рабочая нагрузка растяжек LC = 0. В креплении нет необходимости.

Крепление прижимом

F

необходимая сила натяжения ремней;

m

масса груза;

g

ускорение свободного падения;

c x , c y , и c z

соответствующие коэффициенты ускорения;

коэффициент трения;

вертикальный угол установки ремней;

коэффициент передачи.

Если мы посмотрим, как будет изменяться количество ремней при изменении коэффициента трения, то увидим, что трение является наиважнейшим элементом крепления.

расчет по стандарту EN 12195-1.

Крепление четырехтонного станка от смещения вперед прижимными ремнями с прижимающей силой STF=250 daN.

Вертикальный угол установки ремней a = 60º.

Коэффициент ускорения C X = 0,8

При коэффициенте трения  = 0,3 требуемое количество ремней – 21 шт.

При коэффициенте трения  = 0,6 требуемое количество ремней – 5 шт.

При коэффициенте трения = 0,8 требуемое количество ремней – 0.

Другой пример иллюстрируется диаграммой компании Dolezych, которая иллюстрирует, как изменяется количество требуемых ремней с прижимающей силой STF = 750 daN при креплении груза весом 25 т.

О чем следует помнить всегда – о том, что трение само по себе не может являться единственным средством крепления. Всегда существует опасность, что на неровной дороге может исчезнуть сцепление груза и транспортного средства.

3. Основные способы увеличения коэффициента трения

1. Дооборудование кузова:

Установка специальных «зацепов», увеличивающих сцепление груза и настила грузовой платформы;

Покрытие настила кузова специальными составами, увеличивающими трение.

2. Использование специальных прокладок между грузом и настилом кузова:

Металлические шайбы с зубчиками;

Деревянные прокладки и другие материалы, увеличивающие коэффициент трения;

Специально изготовленные резиновые коврики с гарантированным коэффициентом трения.

Подкладочные материалы и прокладки, сделанные из материалов с повышенным коэффициентом трения, могут использоваться для увеличения трения между грузовой площадкой и грузом, а также между грузовыми ярусами, если необходимо. Существуют различные типы противоскользящих материалов, например коврики, резиновые маты и листы бумаги, покрытые составами, увеличивающими трение. Они должны иметь соответствующие коэффициент трения, прочность и толщину, чтобы обеспечить крепление груза на протяжении всей транспортировки. Коэффициент трения должен быть подтвержден производителем.

Использование противоскользящих материалов позволяет уменьшить количество требуемых креплений. Очень часто материал используется в виде квадратных кусков, отрезаемых от полосы, длиной от 5 до 20 м и 150, 200 или 250 мм шириной. Толщина варьируется от 3 до 10 мм. Такие куски можно использовать многократно – до десяти раз, но следует учитывать, что функциональность снижается, если прокладки становятся промасленными.

4. Основные различия между стандартами по трению

Напомню, что в Европе существуют два стандарта по креплению грузов:

1) руководство IMO/ ILO/ UN ECE Guidelines for Packing of Cargo Transport Units (CTUs),в переводе на русский «Руководство по укладке грузов в грузовые транспортные единицы» (ГТЕ);

2) стандарт EN 12195-1 “Устройства крепления груза на автомобилях. Часть 1: Расчет сил крепления”.

Оба эти стандарта используют различные начальные данные для расчета количества креплений.

Несмотря на различия в стандартах, все применяемые методы крепления учитывают силу трения, увеличение которой значительно уменьшает требуемое количество средств крепления. Целенаправленное использование покрытий с повышенным коэффициентом трения дает очень значительный экономический эффект.

Например, в Германии был опубликован расчет силы трения, а также перечень материалов с повышенным коэффициентом трения в приложениях 14 и 15 к стандарту VDI 2700. Приложение 14 устанавливает порядок определения коэффициента трения, а приложение 15 дает список материалов с увеличенным коэффициентом трения.

Появление этих двух приложений позволило упорядочить правильное применение материалов и дало толчок к развитию исследований и производства специальных материалов с повышенным коэффициентом трения, сертифицированных производителем и обладающим дополнительными техническими характеристиками, которые позволяют обеспечить сохранную транспортировку грузов. Кроме того, производитель дает гарантию на эти материалы. Примеры таких прокладочных материалов приведены на фотографиях.

А в Российской Федерации

Единственный документ, который хоть как-то рекомендует применение материалов с повышенным коэффициентом трения, – это «Правила безопасной морской перевозки грузов», утвержденные приказом Минтранса России от 21 апреля 2003 г. N ВР-1/п.

Приложение № 4 Справочное.

Технические характеристики материалов с повышенным коэффициентом трения

1. Бризол марок БР-С и БР-П по ТУ 38.1051819-88 представляет собой безосновный материал, изготовленный методом вальцевания и последующего каландирования смеси, состоящей из нефтяного битума, дробленой резины (из старых автопокрышек), асбеста и пластификатора. Бризол поставляется в рулонах шириной 425 - 1000 мм. Длина полотна в рулоне 10 - 50 м.

2. Рубероид представляет собой картон по ГОСТ 3135, пропитанный мягкими нефтяными битумами (кровельными) по ГОСТ 9548 с последующим нанесением на обе стороны полотна тугоплавкого битума с наполнителем и крупнозернистой посыпкой с одной стороны полотна. Рубероид поставляется в рулонах шириной 1000 - 1050 мм. Длина полотна в рулоне 10 - 15 м. Токсичных веществ при нагревании до 70 ºС рубероид не выделяет.

3. Изол по ГОСТ 10296 представляет собой безосновный биостойкий гидро- и пароизоляционный материал, получаемый из резинобитумного вяжущего вещества, пластификатора, наполнителя, антисептика и полимерных добавок. Поставляется в виде рулонов из полотна толщиной 2 мм, шириной 800 или 1000 мм и длиной 10 или 15 м.

4. Стеклорубероид по ГОСТ 15879 представляет собой кровельный и гидроизоляционный материал на стекловолокнистой основе, получаемый путем двустороннего нанесения битумного вяжущего вещества на стекловолокнистый холст. Поставляется в виде полотна толщиной 2,5 мм, шириной 960 или 1000 мм и площадью 10 м, свернутого в рулоны. Выпускается с крупнозернистой (С-РК), мелкозернистой (С-РМ) или чешуйчатой (С-РЧ) посыпкой с лицевой стороны и мелкой (пылевидной) с нижней стороны. Применение стеклорубероида с чешуйчатой посыпкой (С-РЧ) для целей крепления груза не допускается.

5. Древесина преимущественно малоценных пород в виде досок, брусьев, клиньев и фанеры.

6. Другие виды специальных материалов с повышенным коэффициентом трения или клеящим эффектом.

При расчетах смещаемости грузов следует применять значения коэффициентов трения, выделенные жирно в таблице п. 4.1, если в информации о грузе не указаны иные значения.

Таблица п. 4.1.

Пара трения

Коэффициент трения покоя , f

Arctg (f) ,

градусы

Чугун по стали

Чугун по дереву

Чугун по бризолу, рубероиду

Сталь по стали

Сталь по дереву

0,3/0,4/0,5 – 0,6 (0,5)

Сталь по резине

0,5/0,6/0,7 (0,6)

Сталь по рубероиду

Дерево по дереву

0,45/0,65/ (0,55)

Резина по деореву

Мешковина (джут) по мешковине

Мешковина по стали

Мешковина по дереву

Железобетон по дереву

Бумага по бумаге

Бумага по стали

Бумага по дереву

Вы никогда не задумывались, почему ваши руки становятся теплыми, когда вы трете их друг о друга, или почему трением двух деревяшек можно добыть огонь? Ответ – трение! Когда два тела перемещаются относительно друг друга, появляется сила трения, препятствующая такому перемещению. Трение может вызвать высвобождение энергии в виде тепла, согревая руки, высекая огонь и так далее. Чем больше трение, тем больше энергии высвобождается, поэтому, увеличив трение между движущимися частями в механической системе, вы получите немало тепла!

Шаги

Поверхности трущихся тел

    Когда два тела перемещаются относительно друг друга, могут возникнуть следующие три процесса: неровности на поверхности тел мешают движению тел относительно друг друга; одна или обе поверхности тел могут деформироваться в результате такого перемещения; атомы каждой поверхности могут взаимодействовать друг с другом. Все перечисленные процессы участвуют в возникновении трения. Поэтому для увеличения трения выберите тела с абразивной поверхностью (например, наждачная бумага), с деформируемой поверхностью (например, резиновой) или с поверхностью, имеющей адгезивные свойства (например, липкую).

    Сильнее прижмите тела друг к другу, чтобы увеличить трение, так как сила трения пропорциональна силе, действующей на трущееся тела (силе, направленной перпендикулярно направлению перемещения тел относительно друг друга).

    Если одно тело находится в движении, остановите его. До сих пор мы рассматривали трение скольжения, возникающее при перемещении тел относительно друг друга. Трение скольжения намного меньше трения покоя, то есть силы, которую необходимо преодолеть для того, чтобы привести два контактирующих тела в движение. Поэтому труднее сдвинуть с места тяжелый предмет, чем управлять им, когда он уже движется.

    • Проведите простой эксперимент, чтобы понять разницу между трением скольжения и трением покоя. Поставьте стул на гладкий пол (не на ковер). Убедитесь, что на ножках стула нет резиновых или других накладок, препятствующих его скольжению. Толкните стул, чтобы передвинуть его. Вы заметите, что как только стул пришел в движение, вам стало легче толкать его, потому что трение скольжения между стулом и полом меньше трения покоя.
  1. Избавьтесь от смазки между двумя поверхностями, чтобы увеличить трение. Смазочные материалы (масла, вазелин и так далее) значительно уменьшают силу трения между трущимися телами, потому что коэффициент трения между твердыми телами значительно выше коэффициента трения между твердым телом и жидкостью.

    • Проведите простой эксперимент. Потрите сухие руки друг о друга, и вы заметите, что их температура повысилась (они согрелись). Теперь намочите руки и потрите их еще раз. Теперь вам не только легче тереть руки друг о друга, но и нагреваются они меньше (или медленнее).
  2. Избавьтесь от подшипников, колес и других катящихся тел, чтобы избавиться от трения качения и получить трение скольжения, которое намного больше первого (поэтому катить одно тело относительно другого проще, чем толкать/тянуть его).

    • Например, представьте, что вы положили тела одинаковой массы в сани и на колесную тележку. Тележку с колесами намного легче передвигать (трение качения), чем сани (трение скольжения).
  3. Увеличьте вязкость жидкости, чтобы увеличить силу трения. Трение имеет место не только при перемещении твердых тел, но и в жидкостях и газах (вода и воздух, соответственно). Трение между жидкостью и твердым телом зависит от нескольких факторов, например, вязкости жидкости – чем больше вязкость жидкости, тем больше сила трения.

    Лобовое сопротивление

    1. Увеличьте площадь поверхности тела. Как отмечалось выше, при движении твердых тел в жидкостях и газах также возникает сила трения. Сила, препятствующая движению тел в жидкостях и газах, называется лобовым сопротивлением (иногда его называют сопротивлением воздуха или сопротивлением воды). Лобовое сопротивление больше при увеличении площади поверхности тела, которая направлена перпендикулярно направлению движения тела сквозь жидкость или газ.

      • Например, возьмите дробинку массой 1 г и лист бумаги той же массы и одновременно отпустите их. Дробинка сразу же упадет на пол, а лист бумаги будет медленно опускаться вниз. Тут как раз виден принцип лобового сопротивления – площадь поверхности бумаги намного больше, чем у дробинки, поэтому сопротивление воздуха больше и бумага падает на пол медленнее.
    2. Используйте форму тела с большим коэффициентом лобового сопротивления. По площади поверхности тела, направленной перпендикулярно движению, можно судить о лобовом сопротивлении только в общих чертах. Тела различной формы взаимодействуют с жидкостями и газами по-разному (при движении тел сквозь газ или жидкость). Например, круглая плоская пластина имеет большее лобовое сопротивление, чем круглая шарообразная пластина. Величина, характеризующая лобовое сопротивление тел различной формы, называется коэффициентом лобового сопротивления.

      Используйте тела менее обтекаемой формы. Как правило, большие тела кубической формы имеют высокое лобовое сопротивление. Такие тела имеют прямоугольные углы и не сужаются к концу. С другой стороны, тела обтекаемой формы имеют закругленные края и обычно сужаются к концу.

    3. Используйте тела без сквозных отверстий. Любое сквозное отверстие в теле уменьшает лобовое сопротивление, так как позволяет воздуху или воде течь сквозь такое отверстие (благодаря отверстиям уменьшается площадь поверхности тела, перпендикулярная движению). Чем больше сквозные отверстия, тем меньше лобовое сопротивление. Вот почему парашюты, которые предназначены для создания большого лобового сопротивления (чтобы замедлить скорость падения), сделаны из прочного, легкого шелка или нейлона, а не из марли.

      • Например, вы сможете увеличить скорость движения ракетки для пинг-понга, если просверлите в ней несколько отверстий (чтобы уменьшить площадь поверхности ракетки и соответственно уменьшить лобовое сопротивление).
    4. Увеличьте скорость тела, чтобы повысить лобовое сопротивление (это верно для тел любой формы и сделанных из любого материала). Чем выше скорость объекта, тем сквозь больший объем жидкости или газа оно должно пройти и тем больше лобовое сопротивление. Тела, движущиеся на очень высоких скоростях, испытывают огромное лобовое сопротивление, поэтому они должны быть обтекаемыми; в противном случае сила сопротивления разрушит их.

      • Например, рассмотрим Lockheed SR-71 – экспериментальный самолет-разведчик, построенный во времена холодной войны. Этот самолет мог летать с высокой скоростью М = 3,2 и, несмотря на его обтекаемую форму, испытывал огромное лобовое сопротивление (такое большое, что металл, из которого был сделан фюзеляж самолета, расширялся при нагревании, возникающем при трении).
    • Не забывайте, что при трении высвобождается много энергии в виде тепла. Например, не прикасайтесь к тормозным колодкам автомобиля непосредственно после торможения!
    • Имейте в виду, что высокие силы сопротивления могут привести к разрушению тела, движущегося в жидкости. Например, если во время прогулки на катере вы положите в воду кусок фанеры (так, чтобы ее поверхность была направлена перпендикулярно движению катера), то, скорее всего, фанера сломается.

Во время опытов со стальной плитой и бруском, (подробнее: ) произошел такой случай: однажды в лабораторию принесли пузырек с настойкой валерианы и открыли его - запах валерианы быстро распространился по всей комнате, и... вдруг произошло уменьшение силы трения между плитой и бруском. Этот случай породил много шуток, так как известно, что валериану часто употребляют нервные люди в качестве успокаивающего средства, она же оказалась «лекарством от трения». Летучее вещество как "лекарство от трения".

Установлено, что летучие вещества уменьшают силу трения . Не только настойка валерианы оказалась способной уменьшать трение. То же самое наблюдалось, когда в лабораторию приносили блюдце с уксусной эссенцией или открывали флакон с духами. По всей вероятности, летучие вещества, такие, как эфир , на котором настаивают валериановые капли, уксус и др., оседают на поверхности металла в виде тончайших пленок и отделяют трущиеся поверхности друг от друга; возможно, они заполняют мельчайшие впадинки и неровности поверхности металла, сглаживают их, тем самым уменьшая трение, а возможно, эти частички просто перекатываются между соприкасающимися поверхностями, как шарики. Трение между слегка загрязненными гладкими поверхностями часто бывает меньше, чем между чистыми.

Трущиеся поверхности смазывают маслом

Особенно резко уменьшается сила трения скольжения, когда трущиеся поверхности смазывают маслом . Вязкое масло заполняет все неровности, затягивает поверхность металла сплошной пленкой. В таком случае происходит уже не движение металла по металлу, а движение одной масляной пленки, приставшей к трущейся поверхности, по другой, приставшей к противоположной поверхности. Сила трения скольжения при этом резко уменьшается.

Смазочные вещества

Для уменьшение силы трения качестве смазочного вещества не всегда употребляют масло, для этой цели иногда годятся и другие жидкости: вода, ртуть, растворы мыла и т. п. Твердые вещества, измельченные в тончайший порошок, могут образовывать так называемую сухую смазку. Для этого часто применяют графитовую пыль .

Тема урока:

Сила трения. Вред и польза силы трения. Способы увеличен и я и уменьшения силы трения

Выполнили:

Садыкова Н.С.,

СШ №12, г. Капшагай, с. Заречное

Тема урока: «Сила трения.Вред и польза силы трения.Способы увеличения и уменьшения силы трения »

Цели урока:

Обучающая:

    ввести понятие силы трения и познакомить учащихся с её особенностями;

    изучить причины и виды трения, выяснить природу силы трения, ее направление, способы увеличения и уменьшения;

    дать качественную формулировку этого понятия.

Развивающая:

    создать условия для развития мыслительных и коммуникативных качеств учащихся;

    развивать у учащихся творческие способности (написание докладов и сказок).

Воспитательная:

    воспитывать наблюдательность, культуру речи, умение четко выражать свою мысль;

    воспитывать умение видеть физику вокруг себя.

Тип урока: урок изучения нового материала, проблемно-поисковый.

Приборы и материалы: учебник «Физика и астрономия 7»; дидактические пособия (карточки-задания); наклонная плоскость; легкоподвижная тележка; демонстрационный динамометр; набор грузов.

План урока (45 минут):

    Орг. момент (3 минуты)

    Актуализация знаний(7 минут).

    Объяснение нового материала(20 минут)

    Рефлексия(10 минут)

    Домашнее задание, подведение итогов(5 минут).

Ход урока:

1. Орг. момент(3минуты).

Здравствуйте. Садитесь.

Сегодня мы с вами приступаем к изучению новой темы «Сила трения». На уроке мы введем понятие силы трения и познакомимся с её особенностями, изучить причины и виды трения, выяснить природу силы трения, ее направление, способы увеличения и уменьшения.

Для этого повторим те силы, которые мы уже с вами прошли.

(опорный конспект №1 «Сила» )

СИЛА,F

Сила тяжести, F тяж Сила упругости, F упр

2. Актуализация знаний(7минут).

Мы уже изучили силу тяжести и силу упругости. Теперь для того, чтоб еще раз закрепить изученные силы вы напишите тест.

(Тест 3 варианта, раздать )

Вариант I

I . Весом тела называют силу, с которой…

II . Силой тяжести называют силу, с которой…

III . Силой упругости называют силу, с которой…

1. тело притягивается к Земле.

2. тело действует на другое тело, вызывающее деформацию.

3.тело вследствие притяжения к Земле действует на опору или подвес.

2. Какая сила удерживает спутник на орбите?

    Сила тяжести.

    Вес тела.

    Сила упругости.

3. По международному соглашению за единицу силы принят..

    ньютон. Сокращенное обозначение – Н.

    килограмм. Сокращенное обозначение – кг.

    метр в секунду. Сокращенное обозначение – м/с.

4. Чему равна сила тяжести, действующая на тело массой 50 кг?

Вариант II

1. Выберите верное высказывание

I . Камень падает на землю вследствие того, что на него действует…

1.вес тела.

2. сила упругости.

3. сила тяжести.

2. Пружина под действием подвешенной к ней гири растянулась. Какая сила вызвала растяжение пружины?

    Сила тяжести.

    Вес тела.

    Сила упругости.

3. 1 Ньютон – это сила, которая…

    за 1 с сообщает телу массой 1 кг скорость 1 м/с.

    за 1 с изменяет скорость тела на 1 м/с.

    за 1 с изменяет скорость тела массой 1 кг на 1 м/с.

4. Чему равна сила тяжести, действующая на тело массой 5 кг?

Вариант III

1. Выберите верное высказывание

I . Тело, выпущенное из рук, падает на землю. Какая сила вызывает падение тел?

II . На книгу, лежащую на столе, со стороны стола действует…

III . На стол, со стороны лежащей на нем книги, действует…

1. сила тяжести.

2. сила упругости.

3. вес тела.

2. Зависит ли сила тяжести от массы тела?

    Сила тяжести прямо пропорциональна массе тела.

    Не зависит.

    Чем больше масса тела, тем меньше сила, с которой оно притягивается к Земле.

3. 1 Ньютон приблизительно равен силе тяжести, действующей на тело массой…

4. Тело имеет массу 0,5 кг. Каков вес этого тела, если оно неподвижно и находится на горизонтальной опоре?

3. Объяснение нового материала(25минут).

Эпиграф (на доске):

«Вездесущее, необходимое, мешающее –

Вот оно какое – трение!»

Изучение темы начинаю с выдвижения проблемы, демонстрирую опыт.

Опыт: Привожу в движение игрушечный автомобиль. С течением времени его движение прекращается.

Почему же останавливается автомобиль? (Слушаю ответы учащихся)

После этого опыта учащиеся предполагают, что существует какая-то сила.

После этого объявляю тему урока и ставлю следующую проблему

В чем причина существования сил трения?

(опорный конспект №2 «Характеристика силы трения» )

Опыт: сооружаю наклонную плоскость из фанерной доски и бруска. Кладу на наклонную плоскость цилиндр боковой поверхностью и отпустите. На ту же наклонную плоскость положите цилиндр торцом и отпустите.

Дети отвечают на вопросы:

Что явилось причиной движения цилиндра в первом опыте?

(Ответ: сила тяжести )

Что явилось причиной покоя цилиндра во втором опыте?

(Ответ: возникновение силы, компенсирующей силу тяжести )

Определение

Даю определение новой силы:

сила, возникающая при движении одного тела по поверхности другого и направленная в строну, противоположную движению называется силой трения.

Обозначение и единица измерения

Показываю как обозначается сила трения.

Прибор для измерения силы трения

динамометр

Как же можно измерить силу трения?

Опыт: На фанерную плоскость кладем деревянный брусок с грузами, цепляем динамометром и равномерно перемещаем по плоскости. Динамометр показывает некоторую силу.

Дети отвечают на вопросы:

Какую силу показывает динамометр?

(Ответ: динамометр показывает силу 1,5 Н)

На тело действует сила, но скорость движения не изменяется. Значит, существует компенсирующая сила, равная силе динамометра.

Куда направлена сила, равная движущей силе?

(Ответ: сила направлена против движения бруска);

Где находится точка приложения этой силы?

(Ответ: точка приложения находится в месте контакта двух поверхностей).

Сделайте вывод.

измеряя силу, с которой динамометр действует на тело при его равномерном движении , мы находим силу трения .

Величина и направление

Мы уже выяснили из опыта, что сила трения имеет направление, а сила имеет направление, то эта величина векторная.

Сила трения - это величина векторная.

Сила направлена против движения тела.

Формула

,

где - коэффициент трения, - сила нормального давления.

Коэффициент трения - это уже рассчитанная величина, приведенная таблице №4 на странице 216.

Силой нормального давления, называется сила, с которой тело действует на опору, направленной перпендикулярно к опоре.

N =F тяж => N =mg

Причины

Опыт: Для этого сравниваем движение металлического шарика по линолеуму, столу, наждачной бумаге и ковру. На подобных примерах устанавливаем, что причиной трения является шероховатость поверхности соприкасающихся тел.

Даже самые гладкие на вид поверхности имеют неровности , которые препятствуют движению одного тела по поверхности другого. Но оказывается уменьшение неровностей уменьшает силу трения только вначале. Дальнейшее уменьшение шероховатости приводит к увеличению силы трения (называю и вторую причину возникновения силы трения - молекулярное взаимодействие , которое приводит как бы к прилипанию соприкасающихся поверхностей).

И так, причины возникновения силы трения две - неровности поверхности и силы притяжения между молекулами соприкасающихся поверхностей.


Неровности поверхности

Силы притяжения между молекулами соприкасающихся поверхностей


При шероховатых поверхностях трение обусловлено главным образом первой причиной, а при очень гладких поверхностях сказывается молекулярная природа трения.

Виды

Сила трения


трение скольжения трение качения трение покоя

Если тело скользит по поверхности, его движению препятствует сила трения скольжения . Например, когда мы скатываемся на санках, нас тормозит сила трения скольжения

Телу катящемуся по поверхности препятствует сила трения качения . Например, когда вы едите на велосипеде, вас тормозит сила трения качения.

Когда мы пытаемся сдвинуть шкаф с места, действуя на него с какой-либо силой, то в случае, если шкаф останется в покое, можно сделать вывод – тело не изменило своей скорости. Это говорит о том, что есть еще сила, направленная противоположно этому действию и равная ему по величине. Эта сила называется силой трения покоя. Именно сила трения покоя мешает сдвигать с места тяжелые предметы.

От чего же зависит сила трения?

Как вы думаете сила трения будет зависеть от материала трущихся поверхностей?

От нагрузки?

От обработки трущихся поверхностей?

А от площади контактных тел?

Итак, делаем выводы :

Сила трения зависит от материала соприкасающихся тел, от нагрузки, от шероховатости и не зависит от площади контакта тел.

Трение, как и любое физическое явление, может быть и вредным, и полезным.

Когда оно полезно, его стараются увеличить. Например, в гололед перед школой дорогу посыпают песком.

Но когда сила трения мешает ее уменьшают. Как же можно уменьшить силу трения?

(Даю учащимся высказать свои предположения. Обращаю внимание на то, что уменьшить силу трения можно изменив причины, от которых зависит сила трения (шероховатость, материал, нагрузка))

Но в жизни часто бывает так, что эти причины не устранимы. Единственный способ - изменить один вид трения на другой .

Опыт: На перевёрнутую вверх колёсами машинку помещаю груз. Тележку равномерно перемещаю по поверхности. Отмечаю силу динамометра. Затем тележку ставлю на колёса и помещаю тот же груз. При равномерном перемещении динамометр отмечает меньшую силу.

При равных нагрузках сила трения качения всегда меньше силы трения скольжения.

Еще для уменьшения силы трения некоторые тела тщательно шлифуют и применяют смазку. Например, все детали механизмов в автомобилях тщательно шлифуют и покрывают тонким слоем смазки.

4. Рефлексия(10минут).

Подвожу итог урока совместно с учениками: достигли ли целей, поставленных вначале свой работы; понравилась ли нам работа. Для закрепления изученного материала и контроля знаний учащихся

1) А теперь, я предлагаю вам найти ответы на народные приметы и пословицы (дидактические пособия – карточки с пословицами). Определите, значение силы трения для каждой пословицы, и какую роль эта сила играет положительную или отрицательную (3минуты).

Коси, коса, пока роса,

Роса долой – и ты домой.

(русская)

Пошло дело, как по маслу.

(русская)

От безделья и лопата ржавеет.

(русская)

Без мыла в душу влезет.

(русская)

От того телега запела,

Что давно дегтя не ела.

(русская)

Не, такого человека, который хоть раз не поскользнулся по льду.

(осетинская)

Каков но, так и режет.

(русская)

Не смазанное колесо ось перетрет.

(узбекская)

Три, три, три – дырка будет.

(русская)

Задумал муравей

Фудзияму-гору сдвинуть.

(японская)

На льду не строятся.

(русская)

Лопату не покрывают позолотой.

(корейская)

Не подмазанная арба не поедет.

(таджикская)

Сухая ложка рот дерет.

(русская)

Из навощенной нити

трудно плести сети.

(корейская)

Баба с возу – кобыле легче.

(русская)

Часы могут остановиться,

Время – никогда.

(сербская)

Плуг от работы блестит.

(русская)

Ключ, который часто в работе, блестит.

(турецкая)

От работы пила,

раскалилась до бела.

(русская)

Ржавый плуг только на пахоте очищается.

(марийская)

Что кругло – легко катится.

(японская)

Жнущий серп всегда блестит.

Кататься, как сыр в масле.

(русская)

Мел оставляет белый след,

а уголь – черный.

(индонезийская)

Против шерсти не гладят.

(русская)

Остер шип на подкове,

Да скоро сбивается.

(русская)

Угря в руках не удержишь.

(французская)

Не подмажешь, не поедешь.

(французская)

Колодезная веревка,

сруб перетирает.(японская)

2) провожу тест(7 минут ):

Тестовое задание

    Сила - причина …

А. … только изменения скорости тела.

Б. … только деформации тела.

В. … изменения скорости и деформации тела.

Г. … движения тела.

    Если тело покоится или движется равномерно, значит …

А. … все силы направлены в одну сторону.

Б. … на него не действуют силы.

В. … силы, действующие на тело, скомпенсированы.

Г. … на него не действуют силы или их равнодействующая равна нулю.

    Силой трения называют силу …

А. … с которой Земля притягивает к себе тела.

Б. … действующую на тело со стороны деформированной опоры и направленную против деформирующей силы.

В. … с которой тело вследствие земного притяжения действует на опору или подвес.

Г. … возникающую при движении одного тела по поверхности другого и направленную в сторону, противоположную движению.

    Точка приложения силы трения расположена …

А. … в центре тела.

Б. … в точке контакта двух тел.

В. … в точке действия внешней силы.

Г. … в любом месте тела.

    Сила трения всегда направлена …

А. … противоположно движению тела.

Б. … противоположно деформирующей силы.

В. … вертикально вниз.

Г. … влево или вправо.

    Сила трения зависит от …

А. … нагрузки.

Б. … шероховатости поверхностей.

В. … вида материала контактирующих поверхностей.

Г. … всех вышеперечисленных фактов.

    Силу трения можно уменьшить …

А. … заменяя один вид трения другим.

Б. … заменяя скольжение качением.

В. … смазывая трущиеся поверхности.

Г. … увеличивая скорость тела.

    Парашютист, масса которого 70 кг, равномерно опускается. Чему равна сила сопротивления воздуха, действующая на парашютиста?

А. 350 Н.

Б. 700 Н.

В. 70 Н.

Г. Среди ответов А - В нет правильного.

Ответы к тесту:

Проверку теста проводят сами учащиеся. Обмениваются своими ответами между собой. Ответы на тестовое задание заранее готовлю на доске. 7 выполненных заданий - отметка “4” (7 баллов), 8 выполненных заданий - отметка “5” (8 баллов). Ниже отметки не ставятся. Обсуждать ответы на вопросы теста может целая группа.

5. Домашнее задание, подведение итогов(3 минут).

Д/з: §41-42 вопросы

Доклады :

1. Трение и движение (скольжение и качение).

2. Трение и покой.

3. Жидкое трение (смазка).

4. Почему возникает трение (причины трения)?

5. Скользить и катиться. (Рассказ о подшипниках; качения и скольжения).

Поделиться