Теорема Пифагора: история вопроса, доказательства, примеры практического применения. Задачи на применение теоремы пифагора Доказательства теоремы пифагора с рисунками

Различные способы доказательства теоремы Пифагора

учащаяся 9 «А» класса

МОУ СОШ №8

Научный руководитель:

учитель математики,

МОУ СОШ №8

ст. Новорождественской

Краснодарского края.

Ст. Новорождественская

АННОТАЦИЯ.

Теорема Пифагора по праву считается самой важной в курсе геометрии и заслуживает при­стального внимания. Она являет­ся основой решения множества геометрических задач, базой для изучения теоретического и практического курса геометрии в дальнейшем. Теорема окружена богатей­шим историческим материалом, связанным с её появлением и способами доказательства. Изучение истории развития геометрии прививает любовь к данному предмету, способствует развитию познава­тельного интереса, общей культу­ры и творчества, а так же развивает навыки научно-исследовательской работы .

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение.

Введение. Историческая справка 5 Основная часть 8

3. Заключение 19

4. Используемая литература 20
1. ВВЕДЕНИЕ. ИСТОРИЧЕСКАЯ СПРАВКА.

Суть истины вся в том, что нам она - навечно,

Когда хоть раз в прозрении ее увидим свет,

И теорема Пифагора через столько лет

Для нас, как для него, бесспорна, безупречна.

На радостях богам был Пифагором дан обет:

За то, что мудрости коснулся бесконечной,

Он сто быков заклал, благодаря предвечных;

Моленья и хвалы вознес он жертве вслед.

С тех пор быки, когда учуят, тужась,

Что к новой истине людей опять подводит след,

Ревут остервенело, так что слушать мочи нет,

Такой в них Пифагор вселил навеки ужас.

Быкам, бессильным новой правде противостоять,

Что остается? - Лишь глаза закрыв, реветь, дрожать.

Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под силь­ным влиянием египетской науки. Частный случай теоре­мы Пифагора - свойства треугольника со сторонами 3, 4 и 5 - был известен строителям пирамид задолго до рожде­ния Пифагора, сам же он более 20 лет обучался у египет­ских жрецов. Сохранилась легенда, которая гласит, что, доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам, даже 100 быков. Это, однако, противоречит сведениям о моральных и ре­лигиозных воззрениях Пифагора. В литературных источ­никах можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всем этим более правдоподобной можно считать следующую запись: «...и даже когда он открыл, что в прямоугольном треугольнике гипо­тенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

Популярность теоремы Пифагора столь велика, что ее доказательства встречаются даже в художественной литературе , например, в рассказе известного английско­го писателя Хаксли «Юный Архимед». Такое же Доказа­тельство, но для частного случая равнобедренного пря­моугольного треугольника приводится в диалоге Плато­на «Менон».

Сказка «Дом».

«Далеко-далеко, куда не летают даже самолеты, находится страна Геометрия. В этой необычной стране был один удиви­тельный город - город Теорем. Однажды в этот город пришла красивая девочка по имени Гипотенуза. Она попробовала снять комнату, но куда бы она ни обращалась, ей всюду отказывали. Наконец она подошла к покосившемуся домику и постучала. Ей открыл мужчина, назвавший себя Прямым Углом, и он предло­жил Гипотенузе поселиться у него. Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по-ново­му. На окошке гипотенуза посадила цветы, а в палисаднике развела красные розы. Дом принял форму прямоугольного тре­угольника. Обоим катетам Гипотенуза очень понравилась и они попросили ее остаться навсегда в их доме. Ло вечерам эта друж­ная семья собирается за семейным столом. Иногда Прямой Угол играет со своими детишками в прятки. Чаще всего искать при­ходится ему, а Гипотенуза прячется так искусно, что найти ее бывает очень трудно. Однажды во время игры Прямой Угол подметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда. Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно. На свойстве этого прямоугольного треугольника и основана тео­рема Пифагора.»

(Из книги А. Окунева «Спасибо за урок, дети»).

Шутливая формулировка теоремы:

Если дан нам треугольник

И притом с прямым углом,

То квадрат гипотенузы

Мы всегда легко найдем:

Катеты в квадрат возводим,

Сумму степеней находим –

И таким простым путем

К результату мы придем.

Изучая алгебру и начала анализа и геометрию в 10 классе , я убедилась в том, что кроме рассмотренного в 8 классе способа доказательства теоремы Пифагора существуют и другие способы доказательства. Представляю их на ваше обозрение.
2. ОСНОВНАЯ ЧАСТЬ.

Теорема. В прямоугольном треугольнике квадрат

гипотенузы равен сумме квадратов катетов.

1 СПОСОБ.

Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.

Доказательство.

а, в и гипотенузой с (рис.1, а).

Докажем, что с²=а²+в² .

Доказательство.

Достроим треугольник до квадрата со стороной а + в так, как показано на рис. 1, б. Площадь S этого квадрата равна (а + в)² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ав  , и квадрата со стороной с, поэтому S= 4 * ½ав + с ² = 2ав + с ².

Таким образом,

(а + в )² = 2ав + с ²,

с²=а²+в² .

Теорема доказана.
2 СПОСОБ.

После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.

Рассмотрим прямоугольный треугольник с прямым углом С, СD– высота (рис. 2). Докажем, что АС ² +СВ ² = АВ ² .

Доказательство.

На основании утверждения о катете прямоугольного треугольника:

АС = , СВ = .

Возведем в квадрат и сложим полученные равенства:

АС² = АВ * АD, СВ² = АВ * DВ;

АС² + СВ² = АВ * (АD + DВ), где АD+DB=AB, тогда

АС² + СВ² = АВ * АВ,

АС² + СВ² = АВ².

Доказательство закончено.
3 СПОСОБ.

К доказательству теоремы Пифагора можно применить определение косинуса острого угла прямоугольного треугольника. Рассмотрим рис. 3.

Доказательство:

Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту СD из вершины прямого угла С.

По определению косинуса угла:

cos А = АD/АС = АС/АВ. Отсюда АВ * АD = АС²

Аналогично,

cos В = ВD/ВС = ВС/АВ.

Отсюда АВ * ВD = ВС² .

Складывая полученные равенства почленно и замечая, что АD + DВ = АВ, получим:

АС ² + ВС ² = АВ (АD + DВ) = АВ ²

Доказательство закончено.
4 СПОСОБ.

Изучив тему «Соотношения между сторонами и углами прямоугольного треугольника», я думаю, что теорему Пифагора можно доказать ещё одним способом.

Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с . (рис. 4).

Докажем, что с²=а²+в².

Доказательство.

sinВ= в/с ; cosВ= a/с, то, возведя в квадрат полученные равенства, получим:

sin²В= в²/с²; cos²В = а²/с².

Сложив их, получим:

sin²В + cos²В= в²/с²+ а²/с², где sin²В + cos²В=1,

1= (в²+ а²) / с², следовательно,

с²= а² + в².

Доказательство закончено.

5 СПОСОБ.

Данное доказательство основано на разрезании квадратов, построенных на катетах (рис. 5), и укладывании полученных частей на квадрате, по­строенном на гипотенузе.

6 СПОСОБ.

Для доказательства на катете ВС строим BCD ABC (рис.6). Мы знаем, что пло­щади подобных фигур отно­сятся как квадраты их сход­ственных линейных размеров:

Вычитая из первого равенства второе, получим

с2 = а2 + b2.

Доказательство закончено.

7 СПОСОБ.

Дано (рис. 7):

ABС, = 90°, ВС = а, АС= b, АВ = с.

Доказать: с2 = а2 + b2 .

Доказательство.

Пусть катет b а. Продолжим отре­зок СВ за точку В и построим треугольник BMD так, что­бы точки М и А лежали по одну сторону от прямой CD и, кроме того, BD = b, BDM = 90°, DM = a, тогда BMD = ABC по двум сторонам и углу между ними. Точки А и М соединим отрезками AM. Имеем MD CD и AC CD, значит, прямая АС параллельна прямой MD. Так как MD < АС, то прямые CD и AM не параллельны. Следова­тельно, AMDC - прямоугольная трапеция.

В прямоугольных треугольниках ABC и BMD 1 + 2 = 90° и 3 + 4 = 90°, но так как = =, то 3 + 2 = 90°; тогда АВМ =180° - 90° = 90°. Оказа­лось, что трапеция AMDC разбита на три неперекрываю­щихся прямоугольных треугольника, тогда по аксиомам площадей

(a+b)(a+b)

Разделив все члены неравенства на , получим

а b + с2 + а b = (а + b) , 2 ab + с2 = а2 + b + b2,

с2 = а2 + b2.

Доказательство закончено.

8 СПОСОБ.

Данный способ основывается на гипотенузе и кате­тах прямоугольного тре­угольника ABC. Он строит соответствующие квадра­ты и доказывает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, постро­енных на катетах (рис. 8).

Доказательство.

1) DBC = FBA = 90°;

DBC + ABC = FBA + ABC, значит, FBC = DBA.

Таким образом, FBC =ABD (по двум сторонам и углу между ними).

2) , где AL DE, так как BD - общее основание, DL - общая высота.

3) , так как FB –снование, АВ - общая высота.

4)

5) Аналогично можно доказать, что

6) Складывая почленно, получаем:

, ВС2 = АВ2 + АС2 . Доказательство закончено.

9 СПОСОБ.

Доказательство.

1) Пусть ABDE - квадрат (рис. 9), сторона которого рав­на гипотенузе прямоугольно­го треугольника ABC (АВ = с, ВС = а, АС = b).

2) Пусть DK BC и DK = ВС, так как 1 + 2 = 90° (как острые углы прямоугольно­го треугольника), 3 + 2 = 90° (как угол квадрата), АВ = BD (стороны квадрата).

Значит, ABC = BDK (по гипотенузе и острому углу).

3)Пусть EL DK, AM EL. Можно легко доказать, что ABC = BDK =DEL = ЕАМ (с катетами а и b). Тогда КС = СМ = ML = LK = а - b.

4) SKB = 4S + SKLMC = 2ab + (a - b), с 2 = 2ab + a2 - 2ab + b2, c2 = a2 + b2 .

Доказательство закончено.

10 СПОСОБ.

Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его со­стоит в преобразовании квад­ратов, построенных на кате­тах, в равновеликие треуголь­ники, составляющие вместе квадрат гипотенузы.

ABC сдвигаем, как пока­зано стрелкой, и он занимает положение KDN. Оставша­яся часть фигуры AKDCB рав­новелика площади квадрата AKDC – это параллелограмм AKNB.

Сделана модель параллелограмма AKNB . Параллелограмм перекладываем так, как зарисовано в содержании работы. Чтобы показать преобразование парал­лелограмма в равновеликий треугольник, на глазах уча­щихся отрезаем на модели треугольник и перекладываем его вниз. Таким образом, площадь квадрата AKDC получилась равна площади прямоугольника. Аналогично преоб­разуем площадь квадрата в площадь прямоугольника.

Произведем преобразование для квадрата, построенно­го на катете а (рис. 11,а):

а) квадрат преобразуется в равновеликий параллелог­рамм (рис. 11,6):

б) параллелограмм поворачивается на четверть оборо­та (рис. 12):

в) параллелограмм преобразуется в равновеликий пря­моугольник (рис. 13): 11 СПОСОБ.

Доказательство:

PCL – прямая (Рис. 14);

KLOA = ACPF = ACED = а2;

LGBO = СВМР = CBNQ = b2;

AKGB = AKLO + LGBO = с2;

с2 = а2 + b2.

Доказательство окончено.

12 СПОСОБ.

Рис. 15 иллюстрирует еще одно ориги­нальное доказательство теоремы Пифагора.

Здесь: треугольник ABC с прямым углом С; отрезок BF перпендикулярен СВ и равен ему, отрезок BE перпендикулярен АВ и равен ему, отрезок AD перпендикулярен АС и равен ему; точки F, С, D принадлежат одной пря­мой; четырехугольники ADFB и АСВЕ равновели­ки, так как ABF = ЕСВ; треугольники ADF и АСЕ равновелики; отнимем от обоих равновеликих четырехугольников общий для них тре­угольник ABC, получим

, с2 = а2 + b2.

Доказательство закончено.

13 СПОСОБ.

Площадь данного пря­моугольного треугольни­ка, с одной стороны, равна , с другой, ,

3. ЗАКЛЮЧЕНИЕ.

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы её доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный мною материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение. В завершении хотелось бы сказать: причина популярности теоремы Пифагора триедина - это красота, простота и значимость!

4. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА.

1. Занимательная алгебра. . Москва «Наука», 1978.

2. Еженедельное учебно-методическое приложение к газете «Первое сентября», 24/2001.

3. Геометрия 7-9. и др.

4. Геометрия 7-9. и др.

Потенциал к творчеству обычно приписывают гуманитарным дисциплинам, естественно научным оставляя анализ, практический подход и сухой язык формул и цифр. Математику к гуманитарным предметам никак не отнесешь. Но без творчеств в «царице всех наук» далеко не уедешь – об этом людям известно с давних пор. Со времен Пифагора, например.

Школьные учебники, к сожалению, обычно не объясняют, что в математике важно не только зубрить теоремы, аксиомы и формулы. Важно понимать и чувствовать ее фундаментальные принципы. И при этом попробовать освободить свой ум от штампов и азбучных истин – только в таких условиях рождаются все великие открытия.

К таким открытиям можно отнести и то, которое сегодня мы знаем как теорему Пифагора. С его помощью мы попробуем показать, что математика не только может, но и должна быть увлекательной. И что это приключение подходит не только ботаникам в толстых очках, а всем, кто крепок умом и силен духом.

Из истории вопроса

Строго говоря, хоть теорема и называется «теоремой Пифагора», сам Пифагор ее не открывал. Прямоугольный треугольник и его особенные свойства изучались задолго до него. Есть две полярных точки зрения на этот вопрос. По одной версии Пифагор первым нашел полноценное доказательство теоремы. По другой доказательство не принадлежит авторству Пифагора.

Сегодня уже не проверишь, кто прав, а кто заблуждается. Известно лишь, что доказательства Пифагора, если оно когда-либо существовало, не сохранилось. Впрочем, высказываются предположения, что знаменитое доказательство из «Начал» Евклида может принадлежать как раз Пифагору, и Евклид его только зафиксировал.

Также сегодня известно, что задачи о прямоугольном треугольнике встречаются в египетских источниках времен фараона Аменемхета I, на вавилонских глиняных табличках периода правления царя Хаммурапи, в древнеиндийском трактате «Сульва сутра» и древнекитайском сочинении «Чжоу-би суань цзинь».

Как видите, теорема Пифагора занимала умы математиков с древнейших времен. Подтверждением служит и около 367 разнообразных доказательств, существующих сегодня. В этом с ней не может тягаться ни одна другая теорема. Среди знаменитых авторов доказательств можно вспомнить Леонардо да Винчи и двадцатого президента США Джеймса Гарфилда. Все это говорит о чрезвычайной важности этой теоремы для математики: из нее выводится или так или иначе с нею связано большинство теорем геометрии.

Доказательства теоремы Пифагора

В школьных учебниках в основном приводят алгебраические доказательства. Но суть теоремы в геометрии, так что давайте рассмотрим в первую очередь те доказателства знаменитой теоремы, которые опираются на эту науку.

Доказательство 1

Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности.

Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:

Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.

Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны» :

Доказательство 2

Этот метод сочетает в себе алгебру и геометрию и может рассматриваться как вариант древнеиндийского доказательства математика Бхаскари.

Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b) . В каждом из квадратов выполните построения, как на рисунках 2 и 3.

В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b .

Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c .

Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b) .

Записав все это, имеем: a 2 +b 2 =(a+b) 2 – 2ab . Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a 2 +b 2 = a 2 +b 2 . При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c 2 . Т.е. a 2 +b 2 =c 2 – вы доказали теорему Пифагора.

Доказательство 3

Само же древнеиндийское доказательство описано в XII веке в трактате «Венец знания» («Сиддханта широмани») и в качестве главного аргумента автор использует призыв, обращенный к математическим талантам и наблюдательности учеников и последователей: «Смотри!».

Но мы разберем это доказательство более подробно:

Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с . Катеты треугольника назовем а и b . В соответствии с чертежом сторона внутреннего квадрата это (a-b) .

Используйте формулу площади квадрата S=c 2 , чтобы вычислить площадь внешнего квадрата. И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b) 2 2+4*1\2*a*b .

Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c 2 =(a-b) 2 +4*1\2*a*b . В результате решения вы получите формулу теоремы Пифагора c 2 =a 2 +b 2 . Теорема доказана.

Доказательство 4

Это любопытное древнекитайское доказательство получило название «Стул невесты» - из-за похожей на стул фигуры, которая получается в результате всех построений:

В нем используется чертеж, который мы уже видели на рис.3 во втором доказательстве. А внутренний квадрат со стороной с построен так же, как в древнеиндийском доказательстве, приведенном выше.

Если мысленно отрезать от чертежа на рис.1 два зеленых прямоугольных треугольника, перенести их к противоположным сторонам квадрата со стороной с и гипотенузами приложить к гипотенузам сиреневых треугольников, получится фигура под названием «стул невесты» (рис.2). Для наглядности можно то же самое проделать с бумажными квадратами и треугольниками. Вы убедитесь, что «стул невесты» образуют два квадрата: маленькие со стороной b и большой со стороной a .

Эти построения позволили древнекитайским математикам и нам вслед за ними прийти к выводу, что c 2 =a 2 +b 2 .

Доказательство 5

Это еще один способ найти решение для теоремы Пифагора, опираясь на геометрию. Называется он «Метод Гарфилда».

Постройте прямоугольный треугольник АВС . Нам надо доказать, что ВС 2 =АС 2 +АВ 2 .

Для этого продолжите катет АС и постройте отрезок CD , который равен катету АВ . Опустите перпендикулярный AD отрезок ED . Отрезки ED и АС равны. Соедините точки Е и В , а также Е и С и получите чертеж, как на рисунке ниже:

Чтобы доказать терему, мы вновь прибегаем к уже опробованному нами способу: найдем площадь получившейся фигуры двумя способами и приравняем выражения друг к другу.

Найти площадь многоугольника ABED можно, сложив площади трех треугольников, которые ее образуют. Причем один из них, ЕСВ , является не только прямоугольным, но и равнобедренным. Не забываем также, что АВ=CD , АС=ED и ВС=СЕ – это позволит нам упростить запись и не перегружать ее. Итак, S ABED =2*1/2(AB*AC)+1/2ВС 2 .

При этом очевидно, что ABED – это трапеция. Поэтому вычисляем ее площадь по формуле: S ABED =(DE+AB)*1/2AD . Для наших вычислений удобней и наглядней представить отрезок AD как сумму отрезков АС и CD .

Запишем оба способа вычислить площадь фигуры, поставив между ними знак равенства: AB*AC+1/2BC 2 =(DE+AB)*1/2(AC+CD) . Используем уже известное нам и описанное выше равенство отрезков, чтобы упростить правую часть записи: AB*AC+1/2BC 2 =1/2(АВ+АС) 2 . А теперь раскроем скобки и преобразуем равенство: AB*AC+1/2BC 2 =1/2АС 2 +2*1/2(АВ*АС)+1/2АВ 2 . Закончив все преобразования, получим именно то, что нам и надо: ВС 2 =АС 2 +АВ 2 . Мы доказали теорему.

Конечно, этот список доказательств далеко не полный. Теорему Пифагора также можно доказать с помощью векторов, комплексных чисел, дифференциальный уравнений, стереометрии и т.п. И даже физики: если, например, в аналогичные представленным на чертежах квадратные и треугольные объемы залить жидкость. Переливая жидкость, можно доказать равенство площадей и саму теорему в итоге.

Пару слов о Пифагоровых тройках

Этот вопрос мало или вообще не изучается в школьной программе. А между тем он является очень интересным и имеет большое значение в геометрии. Пифагоровы тройки применяются для решения многих математических задач. Представление о них может пригодиться вам в дальнейшем образовании.

Так что же такое Пифагоровы тройки? Так называют натуральные числа, собранные по трое, сумма квадратов двух из которых равна третьему числу в квадрате.

Пифагоровы тройки могут быть:

  • примитивными (все три числа – взаимно простые);
  • не примитивными (если каждое число тройки умножить на одно и то же число, получится новая тройка, которая не является примитивной).

Еще до нашей эры древних египтян завораживала мания чисел Пифагоровых троек: в задачах они рассматривали прямоугольный треугольник со сторонами 3,4 и 5 единиц. К слову, любой треугольник, стороны которого равны числам из пифагоровой тройки, по умолчанию является прямоугольным.

Примеры Пифагоровых троек: (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (10, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 36, 45), (14, 48, 50), (30, 40, 50) и т.д.

Практическое применение теоремы

Теорема Пифагора находит применение не только в математике, но и в архитектуре и строительстве, астрономии и даже литературе.

Сначала про строительство: теорема Пифагора находит в нем широкое применение в задачах разного уровня сложности. Например, посмотрите на окно в романском стиле:

Обозначим ширину окна как b , тогда радиус большой полуокружности можно обозначить как R и выразить через b: R=b/2 . Радиус меньших полуокружностей также выразим через b: r=b/4 . В этой задаче нас интересует радиус внутренней окружности окна (назовем его p ).

Теорема Пифагора как раз и пригодиться, чтобы вычислить р . Для этого используем прямоугольный треугольник, который на рисунке обозначен пунктиром. Гипотенуза треугольника состоит из двух радиусов: b/4+p . Один катет представляет собой радиус b/4 , другой b/2-p . Используя теорему Пифагора, запишем: (b/4+p) 2 =(b/4) 2 +(b/2-p) 2 . Далее раскроем скобки и получим b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4-bp+p 2 . Преобразуем это выражение в bp/2=b 2 /4-bp . А затем разделим все члены на b , приведем подобные, чтобы получить 3/2*p=b/4 . И в итоге найдем, что p=b/6 – что нам и требовалось.

С помощью теоремы можно вычислить длину стропила для двускатной крыши. Определить, какой высоты вышка мобильной связи нужна, чтобы сигнал достигал определенного населенного пункта. И даже устойчиво установить новогоднюю елку на городской площади. Как видите, эта теорема живет не только на страницах учебников, но и часто бывает полезна в реальной жизни.

Что касается литературы, то теорема Пифагора вдохновляла писателей со времен античности и продолжает это делать в наше время. Например, немецкого писателя девятнадцатого века Адельберта фон Шамиссо она вдохновила на написание сонета:

Свет истины рассеется не скоро,
Но, воссияв, рассеется навряд
И, как тысячелетия назад,
Не вызовет сомнения и спора.

Мудрейшие, когда коснется взора
Свет истины, богов благодарят;
И сто быков, заколоты, лежат –
Ответный дар счастливца Пифагора.

С тех пор быки отчаянно ревут:
Навеки всполошило бычье племя
Событие, помянутое тут.

Им кажется: вот-вот настанет время,
И сызнова их в жертву принесут
Какой-нибудь великой теореме.

(перевод Виктора Топорова)

А в двадцатом веке советский писатель Евгений Велтистов в книге «Приключения Электроника» доказательствам теоремы Пифагора отвел целую главу. И еще полглавы рассказу о двухмерном мире, какой мог бы существовать, если бы теорема Пифагора стала основополагающим законом и даже религией для отдельно взятого мира. Жить в нем было бы гораздо проще, но и гораздо скучнее: например, там никто не понимает значения слов «круглый» и «пушистый».

А еще в книге «Приключения Электроника» автор устами учителя математики Таратара говорит: «Главное в математике – движение мысли, новые идеи». Именно этот творческий полет мысли порождает теорема Пифагора – не зря у нее столько разнообразных доказательств. Она помогает выйти за границы привычного, и на знакомые вещи посмотреть по-новому.

Заключение

Эта статья создана, чтобы вы могли заглянуть за пределы школьной программы по математике и узнать не только те доказательства теоремы Пифагора, которые приведены в учебниках «Геометрия 7-9» (Л.С. Атанасян, В.Н. Руденко) и «Геометрия 7-11» (А.В. Погорелов), но и другие любопытные способы доказать знаменитую теорему. А также увидеть примеры, как теорема Пифагора может применяться в обычной жизни.

Во-первых, эта информация позволит вам претендовать на более высокие баллы на уроках математики – сведения по предмету из дополнительных источников всегда высоко оцениваются.

Во-вторых, нам хотелось помочь вам прочувствовать, насколько математика интересная наука. Убедиться на конкретных примерах, что в ней всегда есть место творчеству. Мы надеемся, что теорема Пифагора и эта статья вдохновят вас на самостоятельные поиски и волнующие открытия в математике и других науках.

Расскажите нам в комментариях, показались ли вам приведенные в статье доказательства интересными. Пригодились ли вам эти сведения в учебе. Напишите нам, что думаете о теореме Пифагора и этой статье – нам будет приятно обсудить все это с вами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Теорема

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов (рис. 1):

$c^{2}=a^{2}+b^{2}$

Доказательство теоремы Пифагора

Пусть треугольник $A B C$ - прямоугольный треугольник с прямым углом $C$ (рис. 2).

Проведём высоту из вершины $C$ на гипотенузу $A B$, основание высоты обозначим как $H$ .

Прямоугольный треугольник $A C H$ подобен треугольнику $A B C$ по двум углам ($\angle A C B=\angle C H A=90^{\circ}$, $\angle A$ - общий). Аналогично, треугольник $C B H$ подобен $A B C$ .

Введя обозначения

$$B C=a, A C=b, A B=c$$

из подобия треугольников получаем, что

$$\frac{a}{c}=\frac{H B}{a}, \frac{b}{c}=\frac{A H}{b}$$

Отсюда имеем, что

$$a^{2}=c \cdot H B, b^{2}=c \cdot A H$$

Сложив полученные равенства, получаем

$$a^{2}+b^{2}=c \cdot H B+c \cdot A H$$

$$a^{2}+b^{2}=c \cdot(H B+A H)$$

$$a^{2}+b^{2}=c \cdot A B$$

$$a^{2}+b^{2}=c \cdot c$$

$$a^{2}+b^{2}=c^{2}$$

Что и требовалось доказать.

Геометрическая формулировка теоремы Пифагора

Теорема

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах (рис. 2):

Примеры решения задач

Пример

Задание. Задан прямоугольный треугольник $A B C$, катеты которого равны 6 см и 8 см. Найти гипотенузу этого треугольника.

Решение. Согласно условию катеты $a=6$ см, $b=8$ см. Тогда, согласно теореме Пифагора, квадрат гипотенузы

$c^{2}=a^{2}+b^{2}=6^{2}+8^{2}=36+64=100$

Отсюда получаем, что искомая гипотенуза

$c=\sqrt{100}=10$ (см)

Ответ. 10 см

Пример

Задание. Найти площадь прямоугольного треугольника, если известно, что один из его катетов на 5 см больше другого, а гипотенуза равна 25 см.

Решение. Пусть $x$ см - длина меньшего катета, тогда $(x+5)$ см - длина большего. Тогда согласно теореме Пифагора имеем:

$$x^{2}+(x+5)^{2}=25^{2}$$

Раскрываем скобки, сводим подобные и решаем полученное квадратное уравнение:

$x^{2}+5 x-300=0$

Согласно теореме Виета , получаем, что

$x_{1}=15$ (см) , $x_{2}=-20$ (см)

Значение $x_{2}$ не удовлетворяет условию задачи, а значит, меньший катет равен 15 см, а больший - 20 см.

Площадь прямоугольного треугольника равна полупроизведению длин его катетов, то есть

$$S=\frac{15 \cdot 20}{2}=15 \cdot 10=150\left(\mathrm{см}^{2}\right)$$

Ответ. $S=150\left(\mathrm{см}^{2}\right)$

Историческая справка

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

В древнекитайской книге "Чжоу би суань цзин" говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. Крупнейший немецкий историк математики Мориц Кантор (1829 - 1920) считает, что равенство $3^{2}+4^{2}=5^{2}$ было известно уже египтянам ещё около 2300 г. до н.э. По мнению ученого, строители строили тогда прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте приводится приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В школьном курсе геометрии с помощью теоремы Пифагора решаются только математические задачи. К сожалению, вопрос о практическом применении теоремы Пифагора не рассматривается.

В связи с этим, целью моей работы было выяснить области применения теоремы Пифагора.

В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой.

Рассмотрю примеры практического применения теоремы Пифагора. Не буду пытаться привести все примеры использования теоремы - это вряд ли было бы возможно. Область применения теоремы достаточно обширна и вообще не может быть указана с достаточной полнотой.

Гипотеза:

С помощью теоремы Пифагора можно решать не только математические задачи.

По данной исследовательской работе определена следующая цель:

Выяснить области применения теоремы Пифагора.

Исходя из вышеназванной цели, были обозначены следующие задачи:

    Собрать информацию о практическом применении теоремы Пифагора в различных источниках и определить области применения теоремы.

    Изучить некоторые исторические сведения о Пифагоре и о его теореме.

    Показать применение теоремы при решении исторических задач.

    Обработать собранные данные по теме.

Я занималась поиском и сбором информации - изучала печатный материал, работала с материалом в интернете, обработкой собранными данными.

Методика исследования:

    Изучение теоретического материала.

    Изучение методик исследования.

    Практическое выполнение исследования.

    Коммуникативный (метод измерения, анкетирование).

Вид проекта: информационно-исследовательский. Работа выполнялась в свободное время.

О Пифагоре .

Пифагор - древнегреческий философ, математик, астроном. Обосновал многие свойства геометрических фигур, разработал математическую теорию чисел и их пропорций. Внёс значительный вклад в развитие астрономии и акустики. Автор «Золотых стихов», основатель пифагорейской школы в Кротоне.

По преданию Пифагор родился около 580 г. до н. э. на острове Самос в богатой купеческой семье. Его мать - Пифазис, получила свое имя в честь Пифии, жрицы Аполлона. Пифия предсказала Мнесарху и его жене появление на свет сына, сын также был назван в честь Пифии. По многим античным свидетельствам мальчик был сказочно красив и вскоре проявил свои незаурядные способности. Первые познания получил от своего отца Мнесарха, ювелира, резчика по драгоценным камням, который мечтал, что сын станет продолжателем его дела. Но жизнь рассудила иначе. Будущий философ обнаружил большие способности к наукам. Среди учителей Пифагора были Ферекид Сиросский и старец Гермодамант. Первый привил мальчику любовь к науке, а второй - к музыке, живописи и поэзии. Впоследствии Пифагор познакомился известным философом - математиком Фалесом Милетским и по его совету отправился в Египет - центр тогдашней научной и исследовательской деятельности. Прожив 22 года в Египте и 12 лет в Вавилоне, он вернулся на остров Самос, затем покинул его по неизвестным причинам и переехал в город Кротон, на юг Италии. Здесь он создал пифагорейскую школу (союз), в которой изучали различные вопросы философии и математики. В возрасте примерно 60 лет Пифагора женился на Феано, одной из своих учениц. У них рождены трое детей, и все они становятся последователями своего отца. Исторические условия того времени характеризуются широким движением демоса против власти аристократов. Спасаясь от волн народного гнева, Пифагор и его ученики переехали в город Тарента. По одной версии: к нему пришел Килон, богатый и злой человек, желая спьяну вступить в братство. Получив отказ, Килон начал борьбу с Пифагором. При пожаре ученики своей ценой спасли жизнь учителю. Пифагор затосковал и вскоре покончил жизнь самоубийством.

Следует отметить, что это один из вариантов его биографии. Точные даты его рождения и смерти не установлены, многие факты его жизни противоречивы. Но ясно одно: этот человек жил, и оставил потомкам большое философское и математическое наследие.

Теорема Пифагора.

Теорема Пифагора - важнейшее утверждение геометрии. Теорема формулируется следующим образом: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

Открытие этого утверждения приписывают Пифагору Самосскому (XII в. до н. э.)

Изучение вавилонских клинописных табличек и древних китайских рукописей (копий еще более древних манускриптов) показало, что знаменитая теорема была известна задолго до Пифагора, возможно несколько тысячелетий до него.

(Но есть предположение, что Пифагор дал ее полноценное доказательство)

Но есть и другое мнение: в пифагорейской школе был замечательный обычай приписывать все заслуги Пифагору и несколько не присваивать себе славы первооткрывателей, кроме, может быть нескольких случаев.

(Ямвлих-сирийский грекоязычный писатель, автор трактата «Жизнь Пифагора». (II век н. э)

Так немецкий историк математики Кантор считает, что равенство 3 2 + 4 2= 5 2 было

известно египтянам около 2300 лет до н. э. во времена царя Аменехмета (согласно папирусу 6619 Берлинского музея). Одни полагают, что Пифагор дал теореме полноценное доказательство, а другие отказываю ему в этой заслуге.

Некоторые приписывают Пифагору доказательство, которое Евклид приводил в своих «Началах». С другой стороны Прокл (математик, 5 века) утверждает, что доказательство в «Началах» принадлежало самому Евклиду, то есть история математики почти не сохранила достоверных данных о математической деятельности Пифагора. В математике, пожалуй, не найти никакой другой теоремы, заслуживающей всевозможных сравнений.

В некоторых списках «Начал» Евклида эта теорема назвалась «теоремой нимфы» за сходство чертежа с пчелкой, бабочкой(«теорема бабочки»), что по гречки назвалось нимфой. Этим словом греки назвали еще некоторых богинь, а также молодых женщин и невест. Арабский переводчик не обратил внимания на чертеж и перевел слово «нимфа» как «невеста». Так появилось ласковое название «теорема невесты». Существует легенда, что когда Пифагор Самосский доказал свою теорему, он отблагодарил богов, принеся в жертву 100 быков. Отсюда еще одно название- «теорема ста быков».

В англоязычных странах ее назвали: «ветряная мельница», «павлиний хвост», «кресло невесты», «ослиный мост» (если ученик не мог через него «перейти», значит, он был настоящим « ослом»)

В дореволюционной России рисунок теоремы Пифагора для случая равнобедренного треугольника называли «пифагоровыми штанами».

Эти «штаны» появляются, когда на каждой стороне прямоугольного треугольника построить квадраты во внешнюю сторону.

Сколько существует различных доказательств теоремы Пифагора?

Со времен Пифагора их появилось более 350.Теорема попала в Книгу рекордов Гиннеса. Если проанализировать доказательства теоремы, то принципиально различных идей в них используется немного.

Области применения теоремы.

Широкое применение имеет при решении геометрических задач.

Именно с ее помощью, можно геометрически находить значения квадратных корней из целых чисел:

Для этого строим прямоугольный треугольник АОВ (угол А равен 90°) с единичными катетами. Тогда его гипотенуза √2. Затем строим единичный отрезок ВС, ВС перпендикулярен ОВ, длина гипотенузы ОС=√3 и т.д.

(этот способ встречаем у Евклида и Ф. Киренского).

Задачи в курсе физики средней школы требуют знания теоремы Пифагора.

Это задачи связанные со сложением скоростей.

Обратите внимание на слайд: задача из учебника физики 9 класса. В практическом смысле её можно сформулировать так: под каким углом к течению реки должен двигаться катер, осуществляющий перевозку пассажиров между пристанями, чтобы уложиться в расписание?(пристани находятся на противоположных берегах реки)

Когда биатлонист стреляет по мишени, он делает «поправку на ветер». Если ветер дует справа, а спортсмен стреляет по прямой, то пуля уйдёт влево. Чтобы попасть в цель, надо сдвинуть прицел вправо на расстояние смещения пули. Для них составлены специальные таблицы (на основе следствий из т. Пифагора). Биатлонист знает, на какой угол смещать прицел при известной скорости ветра.

Астрономия - также широкая область для применения теоремы Путь светового луча. На рисунке показан путь светового луча от A к B и обратно. Путь луча показан изогнутой стрелкой для наглядности, на самом деле, световой луч - прямой.

Какой путь проходит луч ? Свет идет туда и обратно одинаковый путь. Чему равна половина пути, который проходит луч? Если обозначить отрезок AB символом l , половину времени как t , а также обозначив скорость движения света буквой c , то наше уравнение примет вид

c * t = l

Это ведь произведение затраченного времени на скорость!

Теперь попробуем взглянуть на то же самое явление из другой системы отсчета, например, из космического корабля, пролетающего мимо бегающего луча со скоростью v . При таком наблюдении скорости всех тел изменятся, причем неподвижные тела станут двигаться со скоростью v в противоположную сторону. Предположим, что корабль движется влево. Тогда две точки, между которыми бегает зайчик, станут двигаться вправо с той же скоростью. Причем, в то время, пока зайчик пробегает свой путь, исходная точка A смещается и луч возвращается уже в новую точку C .

Вопрос: на сколько успеет сместиться точка (чтобы превратиться в точку C), пока путешествует световой луч? Точнее: чему равна половина данного смещения? Если обозначить половину времени путешествия луча буквой t" , а половину расстояния AC буквой d , то получим наше уравнение в виде:

v * t" = d

Буквой v обозначена скорость движения космического корабля.

Другой вопрос: какой путь при этом пройдет луч света? (Точнее, чему равна половина этого пути? Чему равно расстояние до неизвестного объекта?)

Если обозначить половину длины пути света буквой s, то получим уравнение:

c * t" = s

Здесь c - это скорость света, а t" - это тоже самое время, которое рассматривали выше.

Теперь рассмотрим треугольник ABC . Это равнобедренный треугольник, высота которого равна l , которое мы ввели при рассмотрении процесса с неподвижной точки зрения. Поскольку движение происходит перпендикулярно l , то оно не могло повлиять не нее.

Треугольник ABC составлен из двух половинок - одинаковых прямоугольных треугольников, гипотенузы которых AB и BC должны быть связаны с катетами по теореме Пифагора . Один из катетов - это d , которое мы рассчитали только что, а второй катет - это s, который проходит свет, и который мы тоже рассчитали.Получаем уравнение:

s 2 = l 2 + d 2

Это ведь теорема Пифагора !

Явление звёздной аберрации, открытое в 1729 году, заключается в том, что все звёзды на небесной сфере описывают эллипсы. Большая полуось этих эллипсов наблюдается с Земли под углом, равным 20,5 градуса. Такой угол связан с движением Земли вокруг Солнца со скоростью 29,8 км в час. Чтобы с движущейся Земли наблюдать звезду, необходимо наклонить трубу телескопа вперёд по движению звезды, так как пока свет проходит длину телескопа, окуляр вместе с землёй перемещается вперёд. Сложение скоростей света и Земли производится векторно, используя т.

Пифагора. U 2 =C 2 +V 2

С-скорость света

V-скорость земли

Труба телескопа

В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку, это явилось следствием открытий итальянского астронома Скиапарелли (открыл на Марсе каналы, которые долгое время считались искусственными). Естественно, что вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно, было решено передать обитателям Марса сигнал в виде теоремы Пифагора.

Неизвестно, как это сделать; но для всех очевидно, что математический факт, выражаемый теоремой Пифагора, имеет место всюду, и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

Мобильная связь

Кто в современном мире не пользуется сотовым телефоном? Каждый абонент мобильной связи заинтересован в ее качестве. А качество в свою очередь зависит от высоты антенны мобильного оператора. Чтобы рассчитать, в каком радиусе можно принимать передачу, применяем теорему Пифагора .

Какую наибольшую высоту должна иметь антенна мобильного оператора, чтобы передачу можно было принимать в радиусе R=200 км? (радиус Земли равен 6380 км.)

Решение:

Пусть AB= x , BC=R=200 км , OC= r =6380 км.

OB=OA+ABOB=r + x.

Используя теорему Пифагора, получим Ответ: 2,3 км.

При строительстве домов и коттеджей часто встает вопрос о длине стропил для крыши, если уже изготовлены балки. Например: в доме задумано построить двускатную крышу (форма в сечении). Какой длины должны быть стропила, если изготовлены балки AC=8 м., и AB=BF.

Решение:

Треугольник ADC - равнобедренный AB=BC=4 м., BF=4 м. Если предположить, что FD=1,5 м., тогда:

А) Из треугольника DBC: DB=2,5 м.

Б) Из треугольника ABF:

Окна

В зданиях готического и романского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон. На рисунке представлен простой пример такого окна в готическом стиле. Способ построения его очень прост: Из рисунка легко найти центры шести дуг окружностей, радиусы которых равны

ширине окна (b) для наружных дуг

половине ширины, (b/2) для внутренних дуг

Остается еще полная окружность, касающаяся четырех дуг. Т. к. она заключена между двумя концентрическими окружностями, то ее диаметр равен расстоянию между этими окружностями, т. е. b/2 и, следовательно, радиус равен b/4. А тогда становится ясным и

положение ее центра.

В романской архитектуре часто встречается мотив, представленный на рисунке. Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4. Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем:

(b/4+p) 2 =(b/4) 2 +(b/4-p) 2

b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4 - bp/2 +p 2 ,

Разделив на b и приводя подобные члены, получим:

(3/2)p=b/4, p=b/6.

В лесной промышленности : для потребностей строительства бревна распиливают на брус, при этом главная задача - получить как можно меньше отходов. Наименьшее число отходов будет тогда, когда брус имеет наибольший объем. Что же должно быть в сечении? Как видно из решения сечение должно быть квадратным, а теорема Пифагора и другие рассуждения позволяют сделать такой вывод.

Брус наибольшего объема

Задача

Из цилиндрического бревна надо выпилить прямоугольный брус наибольшего объема. Какой формы должно быть его сечение (рис. 23)?

Решение

Если стороны прямоугольного сечения х и y, то по теореме Пифагора

x 2 + y 2 = d 2 ,

где d - диаметр бревна. Объем бруса наибольший, когда площадь его сечения наибольшая, т. е. когда ху достигает наибольшей величины. Но если ху наибольшее, то наибольшим будет и произведение х 2 y 2 . Так как сумма х 2 + y 2 неизменна, то, по доказанному ранее, произведение х 2 y 2 наибольшее, когда

х 2 = y 2 или х = y.

Итак, сечение бруса должно быть квадратным.

Транспортные задачи (так называемые задачи на оптимизацию; задачи, решение которых позволяет ответить на вопрос: как располагать средствами для достижения большой выгоды)

На первый взгляд ничего особенного: снять размеры высоты от пола до потолка в нескольких точках, отнять несколько сантиметров, чтобы шкаф не упирался в потолок. Поступив так, в процессе сборки мебели могут возникнуть трудности. Ведь сборка каркаса мебельщики выполняют, располагая шкаф в горизонтальном положении, а когда каркас собран, поднимают его в вертикальное положение. Рассмотрим боковую стенку шкафа. Высота шкафа должна быть на 10 см меньше расстояния от пола до потолка при условии, что это расстояние не превышает 2500 мм. А глубина шкафа - 700 мм. Почему на 10 см, а не на 5 см или на 7, и причем здесь теорема Пифагора?

Итак: боковая стенка 2500-100=2400(мм)- максимальная высота конструкции.

Боковая стенка в процессе подъема каркаса должна свободно пройти как по высоте, так и по диагонали. По теореме Пифагора

АС= √ АВ 2 + ВС 2

АС= √ 2400 2 + 700 2 = 2500 (мм)

Что произойдет если высоту шкафа уменьшить на 50 мм?

АС= √ 2450 2 + 700 2 = 2548 (мм)

Диагональ 2548 мм. Значит, шкаф не поставишь (можно испортить потолок).

Молниеотвод.

Известно, что молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Необходимо определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту.

По теореме Пифагора h 2 ≥ a 2 +b 2, значит h≥(a 2 +b 2) 1/2

Срочно на дачном участке надо сделать парник для рассады.

Из досок сбит квадрат 1м1м. Имеются остатки пленки размером 1,5м1,5м. На какой высоте в центре квадрата надо закрепить рейку, чтобы плёнка полностью его покрыла?

1)Диагональ парника d==1,4;0,7

2)Диагональ плёнки d 1= 2,12 1,06

3) Высота рейки x= 0,7

Заключение

В результате исследования я выяснила некоторые области применения теоремы Пифагора. Мной собрано и обработано много материала из литературных источников и интернета по данной теме. Я изучила некоторые исторические сведения о Пифагоре и его теореме. Да, действительно, с помощью теоремы Пифагора можно решать не только математические задачи. Теорема Пифагора нашла свое применение в строительстве и архитектуре, мобильной связи, литературе.

Изучение и анализ источников информации о теореме Пифагора

показал, что:

а ) исключительное внимание о стороны математиков и любителей математики к теореме основано на ее простоте, красоте и значимости;

б) теорема Пифагора на протяжении многих веков служит толчком к интересным и важным математическим открытиям (теорема Ферма, теория относительности Эйнштейна);

в ) теорема Пифагора - является воплощением универсального языка математики, справедливого во всем мире;

г ) область применения теоремы достаточно обширная и вообще не может быть указана с достаточной полнотой;

д ) тайны теоремы Пифагора продолжают волновать человечество и поэтому каждому из нас дают шанс быть причастным к их раскрытию.

Библиография

    «Успехи математических наук», 1962, т. 17, № 6 (108).

    Александр Данилович Александров (к пятидесятилетию со дня рождения),

    Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия, 10 - 11 кл. - М.: Просвещение, 1992.

    Атанасян Л.С. и др. Геометрия, 10 - 11 кл. - М.: Просвещение, 1992.

    Владимиров Ю.С. Пространство - время: явные и скрытые размерности. - М.: «Наука», 1989.

    Волошин А.В. Пифагор. - М.: Просвещение, 1993.

    Газета «Математика», № 21, 2006.

    Газета «Математика», № 28, 1995.

    Геометрия: Учеб. Для 7 - 11 кл. сред.шк./ Г.П. Бевз, В.Г. Бевз, Н.Г. Владимирова. - М.: Просвещение, 1992.

    Геометрия: Учеб.для 7 - 9 кл. общеобразоват. Учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - 6-е изд. - М.: Просвещение, 1996.

    Глейзер Г.И. История математики в школе: IX - Xкл. Пособие для учителей. - М.: Просвещение, 1983.

    Дополнительные главы к школьному учебнику 8 кл.: Учебное пособие для учащихся шк. и классов с углубл. изуч. математики /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 1996.

    Еленьский Щ. По следам Пифагора. М., 1961.

    Киселёв А.П., Рыбкин Н.А. Геометрия: Планиметрия: 7 - 9 кл.: Учебник и задачник. - М.: Дрофа, 1995.

    Клайн М. Математика. Поиск истины: Перевод с англ. / Под ред. и предисл. В.И. Аршинова, Ю.В. Сачкова. - М.: Мир, 1998.

    Литурман В. Теорема Пифагора. - М., 1960.

    Математика: Справочник школьника и студента / Б. Франк и др.; Перевод с нем. - 3-е изд., стереотип. - М.: Дрофа, 2003.

    Пельтуер А. Кто вы Пифагор? - М.: Знание - сила, № 12, 1994.

    Перельман Я. И. Занимательная математика. - М.: «Наука», 1976.

    Пономарёва Т.Д. Великие учёные. - М.: ООО «Издательство Астрель», 2002.

    Свешникова А. Путешествие в историю математики. - М., 1995.

    Семёнов Е.Е. Изучаем геометрию: Кн. Для учащихся 6 - 8 кл. сред.шк. - М.: Просвещение, 1987.

    Смышляев В.К. О математике и математиках. - Марийское книжное издательство, 1977.

    Тучнин Н.П. Как задать вопрос. - М.: Просвещение, 1993.

    Черкасов О.Ю. Планиметрия на вступительном экзамене. - М.: Московский лицей, 1996.

    Энциклопедический словарь юного математика. Сост. А.П. Савин. - М.: Педагогика, 1985.

    Энциклопедия для детей. Т. 11. Математика. /Глав. Ред. М.Д. Аксёнова. - М.: Аванта +, 2001.

Пифагор - греческий учёный, живший около 2500 лет назад (564-473 гг. до нашей эры).

Пусть дан прямоугольный треугольник, стороны которого а , b и с (рис. 267).

Построим на его сторонах квадраты. Площадиэтих квадратов соответственно равны а 2 , b 2 и с 2 . Докажем, что с 2 = а 2 + b 2 .

Построим два квадрата МКОР и М’К’О’Р’ (рис. 268, 269), приняв за сторону каждого из них отрезок, равный сумме катетов прямоугольного треугольника АBС.

Выполнив в этих квадратах построения, показанные на риунках 268 и 269, мы увидим, что квадрат МКОР разбился на два квадрата с площадями а 2 и b 2 и четыре равных прямоугольных треугольника, каждый изкоторых равен прямоугольному треугольнику АВС. Квадрат М’К’О’Р’ разбился на четырёхугольник (он на рисунке 269 заштрихован) и четыре прямоугольных треугольника, каждый из которых также равен треугольнику АBС. Заштрихованный четырёхугольник - квадрат, так как стороны его равны (каждая равна гипотенузе треугольника АBС, т. е. с ), а углы - прямые ∠1 + ∠2 = 90°, откуда ∠3 = 90°).

Таким образом, сумма площадей квадратов, построенных на катетах (на рисунке 268 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырёх равных треугольников, а площадь квадрата, построенного на гипотенузе (на рисунке 269 этот квадрат тоже заштрихован), равна площади квадрата М’К’О’Р’, равного квадрату МКОР, без суммы площадей четырёх таких же треугольников. Следовательно, площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

Получаем формулу с 2 = а 2 + b 2 , где с - гипотенуза, а и b - катеты прямоугольного треугольника.

Теорему Пифагора кратко принято формулировать так:

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Из формулы с 2 = а 2 + b 2 можно получить такие формулы:

а 2 = с 2 - b 2 ;

b 2 = с 2 - а 2 .

Этими формулами можно пользоваться для нахождения неизвестной стороны прямоугольного треугольника по двум данным его сторонам.

Например:

а) если даны катеты а = 4 см, b = 3 см, то можно найти гипотенузу (с ):

с 2 = а 2 + b 2 , т. е. с 2 = 4 2 + 3 2 ; с 2 = 25, откуда с = √25 = 5(см);

б) если даны гипотенуза с = 17 см и катет а = 8 см, то можно найти другой катет (b ):

b 2 = с 2 - а 2 , т. е. b 2 = 17 2 - 8 2 ; b 2 = 225, откуда b = √225 = 15 (см).

Следствие: Если в двух прямоугольных треугольниках ABC и А 1 В 1 С 1 гипотенузы с и с 1 равны, а катет b треугольника АBС больше катета b 1 треугольника А 1 В 1 C 1 ,

то катет а треугольника ABC меньше катета а 1 треугольника А 1 В 1 C 1 .

В самом деле, на основании теоремы Пифагора получим:

а 2 = с 2 - b 2 ,

а 1 2 = с 1 2 - b 1 2

В записанных формулах уменьшаемые равны, а вычитаемое в первой формуле больше вычитаемого во второй формуле, следовательно, первая разность меньше второй,

т. е. а 2 а 1 2 . Откуда а а 1 .

Поделиться