Derivate complexe. Derivată a unei funcții complexe Derivată a unei funcții complexe pe scurt

În manualele „vechi” se mai numește și regula „lanțului”. Deci dacă y = f (u) și u = φ (x), adică

y = f (φ (x))

    complex - funcţie compozită (compunerea funcţiilor) atunci

Unde , după ce calculul este considerat la u = φ(x).



Rețineți că aici am luat compoziții „diferite” din aceleași funcții, iar rezultatul diferențierii s-a dovedit în mod natural a depinde de ordinea „amestecării”.

Regula lanțului se extinde în mod natural la compoziții cu trei sau mai multe funcții. În acest caz, vor exista trei sau mai multe „legături” în „lanțul” care alcătuiește derivatul. Iată o analogie cu înmulțirea: „avem” un tabel de derivate; „acolo” - masa înmulțirii; „cu noi” este regula lanțului și „acolo” este regula înmulțirii „coloanei”. Atunci când se calculează astfel de derivate „complexe”, nu sunt introduse, desigur, argumente auxiliare (u¸v etc.), dar, având în vedere numărul și succesiunea de funcții implicate în compoziție, legăturile corespunzătoare sunt „înșirate” în ordinea indicată.

.

Aici, cu „x” pentru a obține valoarea lui „y”, se efectuează cinci operații, adică există o alcătuire din cinci funcții: „externă” (ultima dintre ele) - exponențială - e  ;

apoi în ordine inversă, puterea. (♦) 2 ;

sin() trigonometric;

potolit. () 3 și în final ln. logaritmică ().

.

De aceea

Cu următoarele exemple vom „ucide câteva păsări dintr-o piatră”: vom exersa diferențierea funcțiilor complexe și vom adăuga la tabelul de derivate ale funcțiilor elementare. Aşa:

4. Pentru o funcție de putere - y = x α - rescriind-o folosind binecunoscuta „identitate logaritmică de bază” - b=e ln b - în forma x α = x α ln x obținem

5. Pentru o funcție exponențială arbitrară, folosind aceeași tehnică vom avea

6. Pentru o funcție logaritmică arbitrară, folosind formula binecunoscută pentru tranziția la o nouă bază, obținem în mod constant
,

7. Pentru a diferenția tangenta (cotangenta), folosim regula de diferențiere a coeficientilor:

Dacă urmați definiția, atunci derivata unei funcții într-un punct este limita raportului de creștere a funcției Δ y la argumentul increment Δ x:

Totul pare a fi clar. Dar încercați să utilizați această formulă pentru a calcula, să zicem, derivata funcției f(x) = x 2 + (2x+ 3) · e x păcat x. Dacă faci totul prin definiție, atunci după câteva pagini de calcule vei adormi pur și simplu. Prin urmare, există modalități mai simple și mai eficiente.

Pentru început, observăm că din întreaga varietate de funcții putem distinge așa-numitele funcții elementare. Acestea sunt expresii relativ simple, ale căror derivate au fost mult timp calculate și tabulate. Astfel de funcții sunt destul de ușor de reținut - împreună cu derivatele lor.

Derivate ale funcţiilor elementare

Funcțiile elementare sunt toate cele enumerate mai jos. Derivatele acestor funcții trebuie cunoscute pe de rost. În plus, nu este deloc dificil să le memorezi - de aceea sunt elementare.

Deci, derivate ale funcțiilor elementare:

Nume Funcţie Derivat
Constant f(x) = C, CR 0 (da, zero!)
Putere cu exponent rațional f(x) = x n n · x n − 1
Sinusul f(x) = păcat x cos x
Cosinus f(x) = cos x −păcat x(minus sinus)
Tangentă f(x) = tg x 1/cos 2 x
Cotangentă f(x) = ctg x − 1/sin 2 x
Logaritmul natural f(x) = jurnal x 1/x
Logaritmul arbitrar f(x) = jurnal o x 1/(x ln o)
Funcția exponențială f(x) = e x e x(nu s-a schimbat nimic)

Dacă o funcție elementară este înmulțită cu o constantă arbitrară, atunci derivata noii funcție este de asemenea ușor de calculată:

(C · f)’ = C · f ’.

În general, constantele pot fi scoase din semnul derivatei. De exemplu:

(2x 3)’ = 2 · ( x 3)’ = 2 3 x 2 = 6x 2 .

Evident, funcțiile elementare pot fi adăugate între ele, multiplicate, împărțite - și multe altele. Așa vor apărea funcții noi, nu mai deosebit de elementare, dar și diferențiate după anumite reguli. Aceste reguli sunt discutate mai jos.

Derivată a sumei și diferenței

Lasă funcțiile să fie date f(x) Și g(x), ale căror derivate ne sunt cunoscute. De exemplu, puteți lua funcțiile elementare discutate mai sus. Apoi puteți găsi derivata sumei și diferenței acestor funcții:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Deci, derivata sumei (diferența) a două funcții este egală cu suma (diferența) derivatelor. Pot exista mai mulți termeni. De exemplu, ( f + g + h)’ = f ’ + g ’ + h ’.

Strict vorbind, nu există un concept de „scădere” în algebră. Există un concept de „element negativ”. Prin urmare diferența fg poate fi rescris ca o sumă f+ (−1) g, iar apoi rămâne o singură formulă - derivata sumei.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Funcţie f(x) este suma a două funcții elementare, prin urmare:

f ’(x) = (x 2 + păcat x)’ = (x 2)’ + (păcat x)’ = 2x+ cos x;

Raționăm în mod similar pentru funcție g(x). Numai că există deja trei termeni (din punct de vedere al algebrei):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Răspuns:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Derivat al produsului

Matematica este o știință logică, așa că mulți oameni cred că, dacă derivata unei sume este egală cu suma derivatelor, atunci derivata produsului grevă„>egal cu produsul derivatelor. Dar stricați-vă! Derivatul unui produs se calculează folosind o formulă complet diferită. Și anume:

(f · g) ’ = f ’ · g + f · g

Formula este simplă, dar este adesea uitată. Și nu numai școlari, ci și elevi. Rezultatul este probleme rezolvate incorect.

Sarcină. Găsiți derivate ale funcțiilor: f(x) = x 3 cos x; g(x) = (x 2 + 7x− 7) · e x .

Funcţie f(x) este produsul a două funcții elementare, deci totul este simplu:

f ’(x) = (x 3 cos x)’ = (x 3)’ cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (− păcat x) = x 2 (3cos xx păcat x)

Funcţie g(x) primul multiplicator este puțin mai complicat, dar schema generală nu se schimbă. Evident, primul factor al funcției g(x) este un polinom și derivata sa este derivata sumei. Avem:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)’ · e x + (x 2 + 7x− 7) · ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Răspuns:
f ’(x) = x 2 (3cos xx păcat x);
g ’(x) = x(x+ 9) · e x .

Vă rugăm să rețineți că în ultimul pas derivata este factorizată. În mod formal, acest lucru nu trebuie făcut, dar majoritatea derivatelor nu sunt calculate singure, ci pentru a examina funcția. Aceasta înseamnă că în continuare derivata va fi egalată cu zero, semnele sale vor fi determinate și așa mai departe. Pentru un astfel de caz, este mai bine să aveți o expresie factorizată.

Dacă există două funcții f(x) Și g(x), și g(x) ≠ 0 pe mulțimea care ne interesează, putem defini o nouă funcție h(x) = f(x)/g(x). Pentru o astfel de funcție puteți găsi și derivata:

Nu slab, nu? De unde a venit minusul? De ce g 2? Și așa! Aceasta este una dintre cele mai complexe formule - nu vă puteți da seama fără o sticlă. Prin urmare, este mai bine să-l studiați cu exemple specifice.

Sarcină. Găsiți derivate ale funcțiilor:

Numătorul și numitorul fiecărei fracții conțin funcții elementare, deci tot ce ne trebuie este formula pentru derivata coeficientului:


Conform tradiției, să factorizăm numărătorul - acest lucru va simplifica foarte mult răspunsul:

O funcție complexă nu este neapărat o formulă lungă de jumătate de kilometru. De exemplu, este suficient să luați funcția f(x) = păcat xși înlocuiți variabila x, să zicem, pe x 2 + ln x. Se va rezolva f(x) = păcat ( x 2 + ln x) - aceasta este o funcție complexă. Are și un derivat, dar nu va fi posibil să îl găsiți folosind regulile discutate mai sus.

Ce ar trebuii să fac? În astfel de cazuri, înlocuirea unei variabile și a unei formule pentru derivata unei funcții complexe ajută:

f ’(x) = f ’(t) · t', Dacă x este înlocuit cu t(x).

De regulă, situația cu înțelegerea acestei formule este și mai tristă decât cu derivata coeficientului. Prin urmare, este mai bine să-l explicați folosind exemple specifice, cu o descriere detaliată a fiecărui pas.

Sarcină. Găsiți derivate ale funcțiilor: f(x) = e 2x + 3 ; g(x) = păcat ( x 2 + ln x)

Rețineți că dacă se află în funcție f(x) în loc de expresia 2 x+ 3 va fi ușor x, atunci obținem o funcție elementară f(x) = e x. Prin urmare, facem o înlocuire: fie 2 x + 3 = t, f(x) = f(t) = e t. Căutăm derivata unei funcții complexe folosind formula:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Și acum - atenție! Efectuăm înlocuirea inversă: t = 2x+ 3. Obținem:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Acum să ne uităm la funcție g(x). Evident că trebuie înlocuit x 2 + ln x = t. Avem:

g ’(x) = g ’(t) · t’ = (păcat t)’ · t’ = cos t · t

Înlocuire inversă: t = x 2 + ln x. Apoi:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

Asta este! După cum se poate vedea din ultima expresie, întreaga problemă a fost redusă la calcularea sumei derivate.

Răspuns:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Foarte des în lecțiile mele, în loc de termenul „derivat”, folosesc cuvântul „prim”. De exemplu, cursa sumei este egală cu suma curselor. Este mai clar? Ei bine, asta e bine.

Astfel, calcularea derivatei se reduce la a scăpa de aceleași lovituri conform regulilor discutate mai sus. Ca exemplu final, să revenim la puterea derivată cu un exponent rațional:

(x n)’ = n · x n − 1

Puțini oameni știu asta în rol n poate fi un număr fracționar. De exemplu, rădăcina este x 0,5. Ce se întâmplă dacă există ceva fantezist sub rădăcină? Din nou, rezultatul va fi o funcție complexă - le place să dea astfel de construcții în teste și examene.

Sarcină. Aflați derivata funcției:

Mai întâi, să rescriem rădăcina ca o putere cu un exponent rațional:

f(x) = (x 2 + 8x − 7) 0,5 .

Acum facem un înlocuitor: let x 2 + 8x − 7 = t. Găsim derivata folosind formula:

f ’(x) = f ’(t) · t ’ = (t 0,5)’ · t’ = 0,5 · t−0,5 · t ’.

Să facem înlocuirea inversă: t = x 2 + 8x− 7. Avem:

f ’(x) = 0,5 · ( x 2 + 8x− 7) −0,5 · ( x 2 + 8x− 7)’ = 0,5 · (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

În sfârșit, înapoi la rădăcini:

După pregătirea preliminară a artileriei, exemplele cu 3-4-5 cuibări de funcții vor fi mai puțin înfricoșătoare. Următoarele două exemple pot părea complicate pentru unii, dar dacă le înțelegeți (cineva va avea de suferit), atunci aproape orice altceva din calculul diferențial va părea o glumă de copil.

Exemplul 2

Aflați derivata unei funcții

După cum sa menționat deja, atunci când găsiți derivata unei funcții complexe, în primul rând, este necesar CorectÎNȚELEGEȚI investițiile dvs. În cazurile în care există îndoieli, vă reamintesc de o tehnică utilă: luăm valoarea experimentală a lui „x”, de exemplu, și încercăm (mental sau într-o schiță) să substituim această valoare în „expresia groaznică”.

1) Mai întâi trebuie să calculăm expresia, ceea ce înseamnă că suma este cea mai adâncă încorporare.

2) Apoi trebuie să calculați logaritmul:

4) Apoi cubează cosinusul:

5) La al cincilea pas diferența este:

6) Și în sfârșit, funcția cea mai exterioară este rădăcina pătrată:

Formula pentru diferențierea unei funcții complexe sunt aplicate în ordine inversă, de la funcția cea mai exterioară la cea mai interioară. Noi decidem:

Pare fara erori:

1) Luați derivata rădăcinii pătrate.

2) Luați derivata diferenței folosind regula

3) Derivata unui triplu este zero. În al doilea termen luăm derivata gradului (cubul).

4) Luați derivata cosinusului.

6) Și, în sfârșit, luăm derivata celei mai profunde încorporare.

Poate părea prea dificil, dar acesta nu este cel mai brutal exemplu. Luați, de exemplu, colecția lui Kuznetsov și veți aprecia toată frumusețea și simplitatea derivatului analizat. Am observat că le place să dea un lucru similar la un examen pentru a verifica dacă un student înțelege cum să găsească derivata unei funcții complexe sau nu înțelege.

Următorul exemplu este pe care îl puteți rezolva singur.

Exemplul 3

Aflați derivata unei funcții

Sugestie: Mai întâi aplicăm regulile de liniaritate și regula de diferențiere a produsului

Soluție completă și răspuns la sfârșitul lecției.

Este timpul să trecem la ceva mai mic și mai frumos.
Nu este neobișnuit ca un exemplu să arate produsul nu a două, ci a trei funcții. Cum să găsiți derivata produsului a trei factori?

Exemplul 4

Aflați derivata unei funcții

Mai întâi ne uităm, este posibil să transformăm produsul a trei funcții în produsul a două funcții? De exemplu, dacă am avea două polinoame în produs, atunci am putea deschide parantezele. Dar în exemplul luat în considerare, toate funcțiile sunt diferite: grad, exponent și logaritm.

În astfel de cazuri este necesar secvenţial aplica regula de diferentiere a produselor de două ori

Trucul este că prin „y” notăm produsul a două funcții: , iar cu „ve” notăm logaritmul: . De ce se poate face asta? Este cu adevărat - acesta nu este un produs al doi factori și regula nu funcționează?! Nu este nimic complicat:


Acum rămâne să aplici regula a doua oară la paranteză:

De asemenea, puteți să vă răsuciți și să puneți ceva din paranteze, dar în acest caz este mai bine să lăsați răspunsul exact în această formă - va fi mai ușor de verificat.

Exemplul luat în considerare poate fi rezolvat în al doilea mod:

Ambele soluții sunt absolut echivalente.

Exemplul 5

Aflați derivata unei funcții

Acesta este un exemplu pentru o soluție independentă în probă se rezolvă folosind prima metodă.

Să ne uităm la exemple similare cu fracții.

Exemplul 6

Aflați derivata unei funcții

Există mai multe moduri prin care puteți merge aici:

Sau cam asa:

Dar soluția se va scrie mai compact dacă folosim mai întâi regula de diferențiere a coeficientului , luând pentru întregul numărător:

În principiu, exemplul este rezolvat, iar dacă este lăsat așa, nu va fi o eroare. Dar, dacă aveți timp, este întotdeauna indicat să verificați schița pentru a vedea dacă răspunsul poate fi simplificat?

Să reducem expresia numărătorului la numitor comunși scăpați de fracția cu trei etaje:

Dezavantajul simplificărilor suplimentare este că există riscul de a greși nu la găsirea derivatei, ci în timpul transformărilor școlare banale. Pe de altă parte, profesorii resping adesea sarcina și cer să „aducă în minte” derivatul.

Un exemplu mai simplu de rezolvat singur:

Exemplul 7

Aflați derivata unei funcții

Continuăm să stăpânim metodele de găsire a derivatei și acum vom lua în considerare un caz tipic în care se propune un logaritm „teribil” pentru diferențiere

Derivate complexe. Derivată logaritmică.
Derivată a unei funcții putere-exponențială

Continuăm să ne îmbunătățim tehnica de diferențiere. În această lecție, vom consolida materialul pe care l-am abordat, vom analiza derivate mai complexe și, de asemenea, ne vom familiariza cu noi tehnici și trucuri pentru găsirea unei derivate, în special, cu derivata logaritmică.

Acei cititori care au un nivel scăzut de pregătire ar trebui să consulte articolul Cum să găsesc derivatul? Exemple de soluții, care vă va permite să vă ridicați abilitățile aproape de la zero. În continuare, trebuie să studiați cu atenție pagina Derivată a unei funcții complexe, înțelegeți și rezolvați Toate exemplele pe care le-am dat. Această lecție este în mod logic a treia la rând, iar după ce o stăpânești vei diferenția cu încredere funcții destul de complexe. Nu este de dorit să luăm poziția „Unde altundeva? Este suficient!”, deoarece toate exemplele și soluțiile sunt preluate din teste reale și sunt adesea întâlnite în practică.

Să începem cu repetarea. În clasă Derivată a unei funcții complexe Am analizat o serie de exemple cu comentarii detaliate. În timpul studierii calculului diferențial și a altor ramuri ale analizei matematice, va trebui să diferențiezi foarte des și nu este întotdeauna convenabil (și nu întotdeauna necesar) să descrii exemple în detaliu. Prin urmare, vom exersa găsirea derivatelor pe cale orală. Cei mai potriviți „candidați” pentru aceasta sunt derivate ale celei mai simple funcții complexe, de exemplu:

Conform regulii de diferenţiere a funcţiilor complexe :

Când studiați alte subiecte matan în viitor, o înregistrare atât de detaliată nu este de cele mai multe ori necesară, se presupune că studentul știe să găsească astfel de derivate pe pilotul automat. Să ne imaginăm că la ora 3 dimineața a sunat telefonul și o voce plăcută a întrebat: „Care este derivata tangentei a doi X?” Aceasta ar trebui să fie urmată de un răspuns aproape instantaneu și politicos: .

Primul exemplu va fi destinat imediat unei soluții independente.

Exemplul 1

Găsiți oral următoarele derivate, într-o singură acțiune, de exemplu: . Pentru a finaliza sarcina trebuie doar să utilizați tabel de derivate ale funcțiilor elementare(dacă nu ți-ai amintit încă). Dacă aveți dificultăți, vă recomand să recitiți lecția Derivată a unei funcții complexe.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Răspunsuri la sfârșitul lecției

Derivate complexe

După pregătirea preliminară a artileriei, exemplele cu 3-4-5 cuibări de funcții vor fi mai puțin înfricoșătoare. Următoarele două exemple pot părea complicate pentru unii, dar dacă le înțelegeți (cineva va avea de suferit), atunci aproape orice altceva din calculul diferențial va părea o glumă de copil.

Exemplul 2

Aflați derivata unei funcții

După cum sa menționat deja, atunci când găsiți derivata unei funcții complexe, în primul rând, este necesar CorectÎNȚELEGEȚI investițiile dvs. În cazurile în care există îndoieli, vă reamintesc de o tehnică utilă: luăm valoarea experimentală a lui „x”, de exemplu, și încercăm (mental sau într-o schiță) să substituim această valoare în „expresia groaznică”.

1) Mai întâi trebuie să calculăm expresia, ceea ce înseamnă că suma este cea mai adâncă încorporare.

2) Apoi trebuie să calculați logaritmul:

4) Apoi cubează cosinusul:

5) La al cincilea pas diferența este:

6) Și în sfârșit, funcția cea mai exterioară este rădăcina pătrată:

Formula pentru diferențierea unei funcții complexe sunt aplicate în ordine inversă, de la funcția cea mai exterioară la cea mai interioară. Noi decidem:

Se pare că nu există erori...

(1) Luați derivata rădăcinii pătrate.

(2) Luăm derivata diferenței folosind regula

(3) Derivata tripluului este zero. În al doilea termen luăm derivata gradului (cubul).

(4) Luați derivata cosinusului.

(5) Luați derivata logaritmului.

(6) Și, în sfârșit, luăm derivata celei mai profunde încorporare.

Poate părea prea dificil, dar acesta nu este cel mai brutal exemplu. Luați, de exemplu, colecția lui Kuznetsov și veți aprecia toată frumusețea și simplitatea derivatului analizat. Am observat că le place să dea un lucru similar la un examen pentru a verifica dacă un student înțelege cum să găsească derivata unei funcții complexe sau nu înțelege.

Următorul exemplu este pe care îl puteți rezolva singur.

Exemplul 3

Aflați derivata unei funcții

Sugestie: Mai întâi aplicăm regulile de liniaritate și regula de diferențiere a produsului

Soluție completă și răspuns la sfârșitul lecției.

Este timpul să trecem la ceva mai mic și mai frumos.
Nu este neobișnuit ca un exemplu să arate produsul nu a două, ci a trei funcții. Cum să găsiți derivata produsului a trei factori?

Exemplul 4

Aflați derivata unei funcții

Mai întâi ne uităm, este posibil să transformăm produsul a trei funcții în produsul a două funcții? De exemplu, dacă am avea două polinoame în produs, atunci am putea deschide parantezele. Dar în exemplul luat în considerare, toate funcțiile sunt diferite: grad, exponent și logaritm.

În astfel de cazuri este necesar secvenţial aplica regula de diferentiere a produselor de două ori

Trucul este că prin „y” notăm produsul a două funcții: , iar cu „ve” notăm logaritmul: . De ce se poate face asta? Este cu adevărat – acesta nu este un produs al doi factori și regula nu funcționează?! Nu este nimic complicat:

Acum rămâne să aplici regula a doua oară la paranteză:

De asemenea, puteți să vă răsuciți și să puneți ceva din paranteze, dar în acest caz este mai bine să lăsați răspunsul exact în această formă - va fi mai ușor de verificat.

Exemplul luat în considerare poate fi rezolvat în al doilea mod:

Ambele soluții sunt absolut echivalente.

Exemplul 5

Aflați derivata unei funcții

Acesta este un exemplu pentru o soluție independentă în probă se rezolvă folosind prima metodă.

Să ne uităm la exemple similare cu fracții.

Exemplul 6

Aflați derivata unei funcții

Există mai multe moduri prin care puteți merge aici:

Sau cam asa:

Dar soluția se va scrie mai compact dacă folosim mai întâi regula de diferențiere a coeficientului , luând pentru întregul numărător:

În principiu, exemplul este rezolvat, iar dacă este lăsat așa cum este, nu va fi o eroare. Dar, dacă aveți timp, este întotdeauna indicat să verificați schița pentru a vedea dacă răspunsul poate fi simplificat? Să reducem expresia numărătorului la un numitor comun și să scăpăm de fracția cu trei etaje:

Dezavantajul simplificărilor suplimentare este că există riscul de a greși nu la găsirea derivatei, ci în timpul transformărilor școlare banale. Pe de altă parte, profesorii resping adesea sarcina și cer să „aducă în minte” derivatul.

Un exemplu mai simplu de rezolvat singur:

Exemplul 7

Aflați derivata unei funcții

Continuăm să stăpânim metodele de găsire a derivatei și acum vom lua în considerare un caz tipic în care se propune un logaritm „teribil” pentru diferențiere

Exemplul 8

Aflați derivata unei funcții

Aici puteți merge pe calea lungă, folosind regula pentru diferențierea unei funcții complexe:

Dar chiar primul pas te cufundă imediat în deznădejde - trebuie să iei derivatul neplăcut dintr-o putere fracțională și apoi și dintr-o fracțiune.

De aceea înainte cum să luăm derivata unui logaritm „sofisticat”, aceasta este mai întâi simplificată folosind proprietățile școlii bine-cunoscute:



! Dacă aveți la îndemână un caiet de practică, copiați aceste formule direct acolo. Dacă nu aveți un caiet, copiați-le pe o coală de hârtie, deoarece exemplele rămase ale lecției se vor învârti în jurul acestor formule.

Soluția în sine poate fi scrisă cam așa:

Să transformăm funcția:

Găsirea derivatei:

Preconversia funcției în sine a simplificat foarte mult soluția. Astfel, atunci când se propune un logaritm similar pentru diferențiere, este întotdeauna recomandabil să-l „defalci”.

Și acum câteva exemple simple pe care să le rezolvați singur:

Exemplul 9

Aflați derivata unei funcții

Exemplul 10

Aflați derivata unei funcții

Toate transformările și răspunsurile sunt la sfârșitul lecției.

Derivată logaritmică

Dacă derivatul logaritmilor este o muzică atât de dulce, atunci se pune întrebarea: este posibil în unele cazuri să se organizeze logaritmul în mod artificial? Poate! Și chiar necesar.

Exemplul 11

Aflați derivata unei funcții

Am analizat recent exemple similare. Ce să fac? Puteți aplica succesiv regula de diferențiere a coeficientului și apoi regula de diferențiere a produsului. Dezavantajul acestei metode este că ajungeți cu o fracție uriașă de trei etaje, cu care nu doriți să vă ocupați deloc.

Dar în teorie și practică există un lucru atât de minunat ca derivata logaritmică. Logaritmii pot fi organizați artificial prin „atârnând” pe ambele părți:

Nota : pentru că funcția poate accepta valori negative, atunci, în general, trebuie să utilizați module: , care va dispărea ca urmare a diferențierii. Cu toate acestea, designul actual este de asemenea acceptabil, unde implicit este luat în considerare complex sensuri. Dar dacă cu toată rigoarea, atunci în ambele cazuri ar trebui făcută o rezervă că.

Acum trebuie să „despărțiți” cât mai mult posibil logaritmul din partea dreaptă (formulele din fața ochilor?). Voi descrie acest proces în detaliu:

Să începem cu diferențierea.
Să completăm ambele părți:

Derivatul din partea dreaptă este destul de simplu, nu îl voi comenta, pentru că dacă citiți acest text, ar trebui să îl puteți gestiona cu încredere.

Dar partea stângă?

Pe partea stângă avem functie complexa. Prevăd întrebarea: „De ce, există o literă „Y” sub logaritm?”

Faptul este că acest „joc cu o literă” - ESTE ÎNȘI O FUNCȚIE(dacă nu este foarte clar, consultați articolul Derivată a unei funcții specificată implicit). Prin urmare, logaritmul este o funcție externă, iar „y” este o funcție internă. Și folosim regula pentru diferențierea unei funcții complexe :

În partea stângă, ca prin farmec, avem un derivat. Apoi, conform regulii proporției, transferăm „y” de la numitorul părții stângi în partea de sus a părții drepte:

Și acum să ne amintim despre ce fel de funcție „jucător” am vorbit în timpul diferențierii? Să ne uităm la starea:

Raspuns final:

Exemplul 12

Aflați derivata unei funcții

Acesta este un exemplu de rezolvat singur. Un exemplu de proiect al unui exemplu de acest tip se află la sfârșitul lecției.

Folosind derivata logaritmică a fost posibil să se rezolve oricare dintre exemplele nr. 4-7, un alt lucru este că funcțiile de acolo sunt mai simple și, poate, utilizarea derivatei logaritmice nu este foarte justificată.

Derivată a unei funcții putere-exponențială

Nu am luat în considerare această funcție încă. O funcție exponențială putere este o funcție pentru care atât gradul cât și baza depind de „x”. Un exemplu clasic care vă va fi dat în orice manual sau prelegere:

Cum se găsește derivata unei funcții exponențiale putere?

Este necesar să se folosească tehnica tocmai discutată - derivata logaritmică. Agățăm logaritmi pe ambele părți:

De regulă, în partea dreaptă, gradul este scos de sub logaritm:

Ca urmare, în partea dreaptă avem produsul a două funcții, care vor fi diferențiate conform formulei standard .

Găsim derivata pentru a face acest lucru, închidem ambele părți sub linii:

Alte acțiuni sunt simple:

In sfarsit:

Dacă orice conversie nu este complet clară, vă rugăm să recitiți cu atenție explicațiile din Exemplul nr. 11.

În sarcinile practice, funcția putere-exponențială va fi întotdeauna mai complicată decât exemplul de prelegere considerat.

Exemplul 13

Aflați derivata unei funcții

Folosim derivata logaritmică.

În partea dreaptă avem o constantă și produsul a doi factori - „x” și „logaritmul logaritmului x” (un alt logaritm este imbricat sub logaritm). Când diferențiem, așa cum ne amintim, este mai bine să mutați imediat constanta din semnul derivat, astfel încât să nu împiedice; și, bineînțeles, aplicăm regula familiară :


Sunt date exemple de calculare a derivatelor folosind formula pentru derivata unei funcții complexe.

Conţinut

Vezi și: Dovada formulei pentru derivata unei funcții complexe

Formule de bază

Aici oferim exemple de calculare a derivatelor următoarelor funcții:
; ; ; ; .

Dacă o funcție poate fi reprezentată ca o funcție complexă în următoarea formă:
,
atunci derivata sa este determinată de formula:
.
În exemplele de mai jos, vom scrie această formulă după cum urmează:
.
Unde .
Aici, indicele sau , situate sub semnul derivatei, denotă variabilele prin care se realizează diferențierea.

De obicei, în tabelele de derivate, sunt date derivate ale funcțiilor din variabila x.

Cu toate acestea, x este un parametru formal. Variabila x poate fi înlocuită cu orice altă variabilă. Prin urmare, la diferențierea unei funcții de o variabilă, pur și simplu schimbăm, în tabelul derivatelor, variabila x în variabila u.

Exemple simple

Exemplul 1
.

Aflați derivata unei funcții complexe
.
Să scriem funcția dată în formă echivalentă:
;
.

În tabelul derivatelor găsim:
.
Conform formulei pentru derivata unei funcții complexe, avem:

Aici .

Exemplul 2
.

Găsiți derivata
.


.
Conform formulei pentru derivata unei funcții complexe, avem:

Luăm constanta 5 din semnul derivatei și din tabelul derivatelor găsim:

Exemplul 3
.

Găsiți derivata -1 pentru semnul derivatei și din tabelul derivatelor găsim:
;
Din tabelul derivatelor găsim:
.

Aplicam formula pentru derivata unei functii complexe:
.
Conform formulei pentru derivata unei funcții complexe, avem:

Exemple mai complexe

În mai mult exemple complexe aplicăm de mai multe ori regula diferențierii unei funcții complexe. În acest caz, calculăm derivata de la final. Adică, împărțim funcția în părțile sale componente și găsim derivatele celor mai simple părți folosind tabelul derivatelor. De asemenea, folosim reguli de diferențiere a sumelor, produse și fracții. Apoi facem substituții și aplicăm formula pentru derivata unei funcții complexe.

Exemplul 4

Exemplul 3
.

Să selectăm cea mai simplă parte a formulei și să găsim derivata acesteia. .



.
Aici am folosit notația
.

Găsim derivata următoarei părți a funcției originale folosind rezultatele obținute. Aplicam regula de diferentiere a sumei:
.

Încă o dată aplicăm regula diferențierii funcțiilor complexe.

.
Conform formulei pentru derivata unei funcții complexe, avem:

Exemplul 5

Aflați derivata funcției
.

Să selectăm cea mai simplă parte a formulei și să găsim derivata acesteia din tabelul cu derivate. .

Aplicam regula de diferentiere a functiilor complexe.
.
Aici
.

Să diferențiem următoarea parte folosind rezultatele obținute.
.
Aici
.

Să diferențiem următoarea parte.

.
Aici
.

Acum găsim derivata funcției dorite.

.
Aici
.

Vezi și:
Distribuie